
What is formula of
\[2\sin A\cos B\]
\[2\cos A\sin B\]
\[2\sin A\sin B\]
\[2\cos A\cos B\]
Answer
466.8k+ views
Hint: In the above given question, we are given four trigonometric expressions of the two combined trigonometric functions of the sine and cosine functions respectively. We have to determine the suitable formula which can be used for each of the four given trigonometric expressions. In order to approach the solution, we have to recall the formulae of the sum and difference of two angles for the sine and cosine functions respectively.
Complete answer:
Since we know that the value of sine and cosine functions for the sum and difference of two angles \[A\] and \[B\] is given by the four formulae written below.
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\cos \left( {A + B} \right) = \sin A\sin B - \cos A\cos B\]
\[\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B\]
Now we can obtain the values of the four above given trigonometric expressions by using these four above written formulae.
Now, adding the formula 1 and 2 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B + \sin A\cos B - \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \sin A\cos B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\]
Now, subtracting the formula 2 from 1 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B - \sin A\cos B + \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \cos A\sin B + \cos A\sin B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\cos A\sin B\]
Now, adding the formula 3 and 4 gives us,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B - \cos A\cos B + \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B + \sin A\sin B\]
Hence,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = 2\sin A\sin B\]
Now, subtracting the formula 3 from 4 gives us,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \sin A\sin B + \cos A\cos B - \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \cos A\cos B + \cos A\cos B\]
Hence,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\cos A\cos B\]
These are the required values of the four above given trigonometric expressions.
Therefore the formula of the four above given trigonometric expressions are,
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
\[2\sin A\sin B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\]
\[2\cos A\cos B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
Note:
In order to remember these formulae, you must remember the four fundamental formulae for the sine and cosine functions of the sum and difference of two different angles respectively.
For the convenience to remember these four formulae, always keep in mind that for a sine function the terms are products of both sine and cosine terms and the plus or minus sign is unchanged. Whereas for a cosine function the terms are products of only like terms i.e. either only sine or cosine terms and the plus or minus sign is reversed.
Complete answer:
Since we know that the value of sine and cosine functions for the sum and difference of two angles \[A\] and \[B\] is given by the four formulae written below.
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\cos \left( {A + B} \right) = \sin A\sin B - \cos A\cos B\]
\[\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B\]
Now we can obtain the values of the four above given trigonometric expressions by using these four above written formulae.
Now, adding the formula 1 and 2 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B + \sin A\cos B - \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \sin A\cos B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\]
Now, subtracting the formula 2 from 1 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B - \sin A\cos B + \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \cos A\sin B + \cos A\sin B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\cos A\sin B\]
Now, adding the formula 3 and 4 gives us,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B - \cos A\cos B + \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B + \sin A\sin B\]
Hence,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = 2\sin A\sin B\]
Now, subtracting the formula 3 from 4 gives us,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \sin A\sin B + \cos A\cos B - \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \cos A\cos B + \cos A\cos B\]
Hence,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\cos A\cos B\]
These are the required values of the four above given trigonometric expressions.
Therefore the formula of the four above given trigonometric expressions are,
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
\[2\sin A\sin B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\]
\[2\cos A\cos B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
Note:
In order to remember these formulae, you must remember the four fundamental formulae for the sine and cosine functions of the sum and difference of two different angles respectively.
For the convenience to remember these four formulae, always keep in mind that for a sine function the terms are products of both sine and cosine terms and the plus or minus sign is unchanged. Whereas for a cosine function the terms are products of only like terms i.e. either only sine or cosine terms and the plus or minus sign is reversed.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

