
What is the formula for the distance between two polar coordinates?
Answer
516.9k+ views
Hint: We know that distance between two points in Cartesian coordinates is given by $D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ . We can form this formula into polar form by replacing $x=r\cos \theta $ and $y=r\sin \theta $ . We can further simplify the equation by using $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ and hence, we will get the required formula.
Complete step-by-step solution:
We know that the distance between any two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the Cartesian plane is given by
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}...\left( i \right)$
This is commonly known as the Distance formula.
We know that we can express any point in Cartesian system into polar coordinates by substituting
$x=r\cos \theta $ and $y=r\sin \theta $ .
So, let us assume that ${{x}_{1}}={{r}_{1}}\cos {{\theta }_{1}}$ and ${{y}_{1}}={{r}_{1}}\sin {{\theta }_{1}}$.
And similarly let us assume that ${{x}_{2}}={{r}_{2}}\cos {{\theta }_{2}}$ and ${{y}_{2}}={{r}_{2}}\sin {{\theta }_{2}}$.
So, now we can write
${{x}_{2}}-{{x}_{1}}={{r}_{2}}\cos {{\theta }_{2}}-{{r}_{1}}\cos {{\theta }_{1}}$
We can take squares on both sides of the equation, and hence we will get
${{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}={{\left( {{r}_{2}}\cos {{\theta }_{2}}-{{r}_{1}}\cos {{\theta }_{1}} \right)}^{2}}$
We know that the identity for the expansion of square of difference is given as
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
By using this identity, we can expand the right hand side (RHS) of the equation as,
\[{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}={{r}_{2}}^{2}{{\cos }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\cos }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\cos {{\theta }_{1}}\cos {{\theta }_{2}}...\left( ii \right)\]
Similarly, we can write
${{y}_{2}}-{{y}_{1}}={{r}_{2}}\sin {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}}$
We can take squares on both sides of the equation, and hence we get
${{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}={{\left( {{r}_{2}}\sin {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}} \right)}^{2}}$
We know that the identity for the expansion of the square of difference is given as
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
By using this identity, we can expand the right hand side (RHS) of our equation as,
\[{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}={{r}_{2}}^{2}{{\sin }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\sin }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\sin {{\theta }_{1}}\sin {{\theta }_{2}}...\left( iii \right)\]
Using the values from equation (ii) and equation (iii) and putting them in equation (i), we get
$D=\sqrt{\left( {{r}_{2}}^{2}{{\cos }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\cos }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\cos {{\theta }_{1}}\cos {{\theta }_{2}} \right)+\left( {{r}_{2}}^{2}{{\sin }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\sin }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We can regroup the terms present here as,
$D=\sqrt{{{r}_{1}}^{2}\left( {{\sin }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{2}} \right)+{{r}_{2}}^{2}\left( {{\sin }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{1}} \right)-2{{r}_{1}}{{r}_{2}}\left( \cos {{\theta }_{1}}\cos {{\theta }_{2}}+\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We all know very well that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . Using this identity, we get,
$D=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\left( \cos {{\theta }_{1}}\cos {{\theta }_{2}}+\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We are aware of the trigonometric identity $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
Using this identity, we can write
$D=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}$
This is the required formula for the calculation of distance between any two points in polar coordinates.
Note: We must remember that in polar coordinates, the angle $\theta $ is always expressed in radians. So, in this question the angles ${{\theta }_{1}}\text{ and }{{\theta }_{2}}$ are in radians and not degrees. We must remember these formulae in polar form as well, to solve the questions easily.
Complete step-by-step solution:
We know that the distance between any two points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ in the Cartesian plane is given by
$D=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}...\left( i \right)$
This is commonly known as the Distance formula.
We know that we can express any point in Cartesian system into polar coordinates by substituting
$x=r\cos \theta $ and $y=r\sin \theta $ .
So, let us assume that ${{x}_{1}}={{r}_{1}}\cos {{\theta }_{1}}$ and ${{y}_{1}}={{r}_{1}}\sin {{\theta }_{1}}$.
And similarly let us assume that ${{x}_{2}}={{r}_{2}}\cos {{\theta }_{2}}$ and ${{y}_{2}}={{r}_{2}}\sin {{\theta }_{2}}$.
So, now we can write
${{x}_{2}}-{{x}_{1}}={{r}_{2}}\cos {{\theta }_{2}}-{{r}_{1}}\cos {{\theta }_{1}}$
We can take squares on both sides of the equation, and hence we will get
${{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}={{\left( {{r}_{2}}\cos {{\theta }_{2}}-{{r}_{1}}\cos {{\theta }_{1}} \right)}^{2}}$
We know that the identity for the expansion of square of difference is given as
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
By using this identity, we can expand the right hand side (RHS) of the equation as,
\[{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}={{r}_{2}}^{2}{{\cos }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\cos }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\cos {{\theta }_{1}}\cos {{\theta }_{2}}...\left( ii \right)\]
Similarly, we can write
${{y}_{2}}-{{y}_{1}}={{r}_{2}}\sin {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}}$
We can take squares on both sides of the equation, and hence we get
${{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}={{\left( {{r}_{2}}\sin {{\theta }_{2}}-{{r}_{1}}\sin {{\theta }_{1}} \right)}^{2}}$
We know that the identity for the expansion of the square of difference is given as
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
By using this identity, we can expand the right hand side (RHS) of our equation as,
\[{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}={{r}_{2}}^{2}{{\sin }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\sin }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\sin {{\theta }_{1}}\sin {{\theta }_{2}}...\left( iii \right)\]
Using the values from equation (ii) and equation (iii) and putting them in equation (i), we get
$D=\sqrt{\left( {{r}_{2}}^{2}{{\cos }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\cos }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\cos {{\theta }_{1}}\cos {{\theta }_{2}} \right)+\left( {{r}_{2}}^{2}{{\sin }^{2}}{{\theta }_{2}}+{{r}_{1}}^{2}{{\sin }^{2}}{{\theta }_{1}}-2{{r}_{1}}{{r}_{2}}\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We can regroup the terms present here as,
$D=\sqrt{{{r}_{1}}^{2}\left( {{\sin }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{2}} \right)+{{r}_{2}}^{2}\left( {{\sin }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{1}} \right)-2{{r}_{1}}{{r}_{2}}\left( \cos {{\theta }_{1}}\cos {{\theta }_{2}}+\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We all know very well that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ . Using this identity, we get,
$D=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\left( \cos {{\theta }_{1}}\cos {{\theta }_{2}}+\sin {{\theta }_{1}}\sin {{\theta }_{2}} \right)}$
We are aware of the trigonometric identity $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
Using this identity, we can write
$D=\sqrt{{{r}_{1}}^{2}+{{r}_{2}}^{2}-2{{r}_{1}}{{r}_{2}}\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}$
This is the required formula for the calculation of distance between any two points in polar coordinates.
Note: We must remember that in polar coordinates, the angle $\theta $ is always expressed in radians. So, in this question the angles ${{\theta }_{1}}\text{ and }{{\theta }_{2}}$ are in radians and not degrees. We must remember these formulae in polar form as well, to solve the questions easily.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

