
For what values of x, the matrix A is singular?
$A=\left[ \begin{align}
& 3-x\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\
& 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,4-x\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& -2\,\,\,\,\,\,\,\,\,\,\,\,-4\,\,\,\,\,\,\,\,\,\,\,-1-x \\
\end{align} \right]\,$
(a) $x=0,2$
(b) $x=1,2$
(c) $x=2,3$
(d) $x=0,3$
Answer
590.7k+ views
Hint: In this question, we will use the condition of the square matrix to be singular, i.e. determinant of the matrix is zero, and solve that equation of condition to find value for x.
Complete step-by-step answer:
In the given question, we are asked to find the values of x such that, for that values A will be singular matrix.
Now, a square matrix is singular matrix when its, inverse matrix does not exist. And, inverse matrix of any square matrix does not exist only when the value of determinant of that square matrix is zero.
Therefore, for given square matrix A to be singular, the value of its determinant must be zero.
Let us first find the determinant of given matrix A. determinant of matrix A is given as,
$|A|=\left[ \begin{align}
& 3-x\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\
& 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,4-x\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& -2\,\,\,\,\,\,\,\,\,\,\,\,-4\,\,\,\,\,\,\,\,\,\,\,-1-x \\
\end{align} \right]\,$
Writing determinant along first row, we get:
$\left| A \right|=\left( 3-x \right)\left| \begin{matrix}
4-x & 1 \\
-4 & -1-x \\
\end{matrix} \right|-2\left| \begin{matrix}
2 & 1 \\
-2 & -1-x \\
\end{matrix} \right|+2\left| \begin{matrix}
2 & 4-x \\
-2 & -4 \\
\end{matrix} \right|$
Writing values of all $2\times 2$ determinants we get,
$\begin{align}
& |A|=\left( 3-x \right)\left( \left( 4-x \right)\left( -1-x \right)-\left( -4 \right)\left( 1 \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,-2\left( \left( 2 \right)\left( -1-x \right)-\left( -2 \right)\left( 1 \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2\left( \left( 2 \right)\left( -4 \right)-\left( -2 \right)\left( 4-x \right) \right) \\
\end{align}$
\[\Rightarrow |A|=\left( 3-x \right)\left( -4-4x+x+{{x}^{2}}+4 \right)-2\left( -2-2x+2 \right)+2\left( -8+8-2x \right)\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)\left( -2\left( -2x \right)+2\left( -2x \right) \right)\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)+4x-4x\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)\]
\[\Rightarrow |A|=3{{x}^{2}}-9x-{{x}^{3}}+3{{x}^{2}}\]
\[\Rightarrow |A|=-{{x}^{3}}+6{{x}^{2}}-9x\]
Taking -x common, we get,
\[|A|=-x\left( {{x}^{2}}-6x+9 \right)\]
Splitting the middle term $-6x\,\,to\,-3x-3x$, to factorize the expression, we get,
\[|A|=-x\left( {{x}^{2}}-3x-3x+9 \right)\]
Taking common terms out, we get,
$\begin{align}
& |A|=-x\left( x\left( x-3 \right)-3\left( x-3 \right) \right) \\
& \,\,\,\,\,\,\,\,=-x\left( x-3 \right)\left( x-3 \right) \\
& \,\,\,\,\,\,\,\,\,\,\,=-x{{\left( x-3 \right)}^{2}} \\
\end{align}$
Now, for A to be singular, condition is,
$|A|=0$
Putting value of |A|, we get,
$-x\left( x-3 \right)=0$
Therefore, either $-x=0\,\,or\,\,\,x-3=0$ .
$\Rightarrow x=0\,\,\,\,or\,\,x=3$
Hence, for x = 0, 3, A is singular.
Therefore, the correct answer is option (d).
Note: In this type of quotations, while finding determinant, it can be opened along any row or relevant column, the value will remain the same.
Complete step-by-step answer:
In the given question, we are asked to find the values of x such that, for that values A will be singular matrix.
Now, a square matrix is singular matrix when its, inverse matrix does not exist. And, inverse matrix of any square matrix does not exist only when the value of determinant of that square matrix is zero.
Therefore, for given square matrix A to be singular, the value of its determinant must be zero.
Let us first find the determinant of given matrix A. determinant of matrix A is given as,
$|A|=\left[ \begin{align}
& 3-x\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2 \\
& 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,4-x\,\,\,\,\,\,\,\,\,\,\,\,1 \\
& -2\,\,\,\,\,\,\,\,\,\,\,\,-4\,\,\,\,\,\,\,\,\,\,\,-1-x \\
\end{align} \right]\,$
Writing determinant along first row, we get:
$\left| A \right|=\left( 3-x \right)\left| \begin{matrix}
4-x & 1 \\
-4 & -1-x \\
\end{matrix} \right|-2\left| \begin{matrix}
2 & 1 \\
-2 & -1-x \\
\end{matrix} \right|+2\left| \begin{matrix}
2 & 4-x \\
-2 & -4 \\
\end{matrix} \right|$
Writing values of all $2\times 2$ determinants we get,
$\begin{align}
& |A|=\left( 3-x \right)\left( \left( 4-x \right)\left( -1-x \right)-\left( -4 \right)\left( 1 \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,-2\left( \left( 2 \right)\left( -1-x \right)-\left( -2 \right)\left( 1 \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+2\left( \left( 2 \right)\left( -4 \right)-\left( -2 \right)\left( 4-x \right) \right) \\
\end{align}$
\[\Rightarrow |A|=\left( 3-x \right)\left( -4-4x+x+{{x}^{2}}+4 \right)-2\left( -2-2x+2 \right)+2\left( -8+8-2x \right)\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)\left( -2\left( -2x \right)+2\left( -2x \right) \right)\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)+4x-4x\]
\[\Rightarrow |A|=\left( 3-x \right)\left( {{x}^{2}}-3x \right)\]
\[\Rightarrow |A|=3{{x}^{2}}-9x-{{x}^{3}}+3{{x}^{2}}\]
\[\Rightarrow |A|=-{{x}^{3}}+6{{x}^{2}}-9x\]
Taking -x common, we get,
\[|A|=-x\left( {{x}^{2}}-6x+9 \right)\]
Splitting the middle term $-6x\,\,to\,-3x-3x$, to factorize the expression, we get,
\[|A|=-x\left( {{x}^{2}}-3x-3x+9 \right)\]
Taking common terms out, we get,
$\begin{align}
& |A|=-x\left( x\left( x-3 \right)-3\left( x-3 \right) \right) \\
& \,\,\,\,\,\,\,\,=-x\left( x-3 \right)\left( x-3 \right) \\
& \,\,\,\,\,\,\,\,\,\,\,=-x{{\left( x-3 \right)}^{2}} \\
\end{align}$
Now, for A to be singular, condition is,
$|A|=0$
Putting value of |A|, we get,
$-x\left( x-3 \right)=0$
Therefore, either $-x=0\,\,or\,\,\,x-3=0$ .
$\Rightarrow x=0\,\,\,\,or\,\,x=3$
Hence, for x = 0, 3, A is singular.
Therefore, the correct answer is option (d).
Note: In this type of quotations, while finding determinant, it can be opened along any row or relevant column, the value will remain the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

