
For what value of n, the nth terms of the two A.P.s: 63, 65, 67, ... and 3, 10, 17, ... are equal ?
Answer
603k+ views
Hint: Use the formula for the nth term of an A.P.: ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$. From the first term, second term and the common difference of both the A.Ps. Using these, find the nth terms of the A.P.s. equate these to find the value of n which is our final answer.
Complete step-by-step answer:
In this question, we are given two A.P.s: 63, 65, 67, ... and 3, 10, 17, …
We need to find the value of n such that the nth terms of the two A.P.s are equal.
For this question, we will use the formula for nth term of an A.P.:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
First A.P is 63, 65, 67, …
First term of this A.P, ${{a}_{1}}$ = 63
Second term of this A.P, ${{a}_{2}}$ = 65
Common difference, d = ${{a}_{2}}$ − ${{a}_{1}}$ = 65 – 63 = 2
Hence, the nth term of this A.P is given by ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
\[~{{a}_{n}}=63\text{ }+\text{ }2\left( n\text{ }-1 \right)\]
\[~{{a}_{n}}=63\text{ }+2n-2\]
\[~{{a}_{n}}=61+2n\] …(1)
Similarly, we will find the nth term of the second A.P.
Second A.P. is 3, 10, 17, …
First term of this A.P, ${{a}_{1}}$ = 3
Second term of this A.P, ${{a}_{2}}$ = 10
Common difference, d = ${{a}_{2}}$ − ${{a}_{1}}$ = 10 – 3 = 7
Hence, the nth term of this A.P is given by ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
\[~{{a}_{n}}=3\text{ }+\text{ 7}\left( n\text{ }-1 \right)\]
\[~{{a}_{n}}=3+7n-7\]
\[~{{a}_{n}}=-4+7n\] …(2)
We have to find that term (n) for which the nth term of both A.P are equal
So, we will equate equation (1) and equation (2).
61 + 2n = -4 + 7n
65 = 5n
n = 13
Hence, the 13th term of both the A.P.s are equal.
Note: In this question, it is very important to know about the general formula for the nth term of an A.P. The formula for the nth term of an A.P. is given by: ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$.
Complete step-by-step answer:
In this question, we are given two A.P.s: 63, 65, 67, ... and 3, 10, 17, …
We need to find the value of n such that the nth terms of the two A.P.s are equal.
For this question, we will use the formula for nth term of an A.P.:
${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
First A.P is 63, 65, 67, …
First term of this A.P, ${{a}_{1}}$ = 63
Second term of this A.P, ${{a}_{2}}$ = 65
Common difference, d = ${{a}_{2}}$ − ${{a}_{1}}$ = 65 – 63 = 2
Hence, the nth term of this A.P is given by ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
\[~{{a}_{n}}=63\text{ }+\text{ }2\left( n\text{ }-1 \right)\]
\[~{{a}_{n}}=63\text{ }+2n-2\]
\[~{{a}_{n}}=61+2n\] …(1)
Similarly, we will find the nth term of the second A.P.
Second A.P. is 3, 10, 17, …
First term of this A.P, ${{a}_{1}}$ = 3
Second term of this A.P, ${{a}_{2}}$ = 10
Common difference, d = ${{a}_{2}}$ − ${{a}_{1}}$ = 10 – 3 = 7
Hence, the nth term of this A.P is given by ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$
\[~{{a}_{n}}=3\text{ }+\text{ 7}\left( n\text{ }-1 \right)\]
\[~{{a}_{n}}=3+7n-7\]
\[~{{a}_{n}}=-4+7n\] …(2)
We have to find that term (n) for which the nth term of both A.P are equal
So, we will equate equation (1) and equation (2).
61 + 2n = -4 + 7n
65 = 5n
n = 13
Hence, the 13th term of both the A.P.s are equal.
Note: In this question, it is very important to know about the general formula for the nth term of an A.P. The formula for the nth term of an A.P. is given by: ${{a}_{n}}={{a}_{1}}+\left( n-1 \right)d$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

