
For what value of n, the geometric mean of a and b is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
Answer
591k+ views
Hint: In this question use the concept that if we have two numbers a and b then the geometric mean of them will be $\sqrt {ab} $, compare the given geometric mean with this standard mean to get the value of n.
Complete step-by-step answer:
Given geometric mean (G.M) of (a and b) is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.............. (1)
Now as we know that the G.M of (a) and (b) is $\sqrt {ab} $ ...................... (2)
Therefore both equations (1) and (2) should be equal so equate them we have.
$ \Rightarrow \dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \sqrt {ab} $
Now simplify the above equation we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}\left( {{a^n} + {b^n}} \right)$
Now again simplify we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{a^n} + {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{b^n}$
\[ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} + {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}}\]
Now shifting the variables we have,
\[ \Rightarrow {a^{n + 1}} - {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} = {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}} - {b^{n + 1}}\]
Now take \[{a^{n + \dfrac{1}{2}}}\] common from L.H.S terms and \[{b^{n + \dfrac{1}{2}}}\] common from R.H.S terms we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {\dfrac{{{a^{n + 1}}}}{{{a^{n + \dfrac{1}{2}}}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - \dfrac{{{b^{n + 1}}}}{{{b^{n + \dfrac{1}{2}}}}}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{n + 1 - n - \dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{n + 1 - n - \dfrac{1}{2}}}} \right)\]
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\]
Now cancel out the common terms from L.H.S and R.H.S we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}} = {b^{n + \dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = 1\]
Now as we know 1 can be written as (a/b)0 so use this property in above equation we have,
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
\[ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{^{n + \dfrac{1}{2}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
So on comparing we have,
$ \Rightarrow n + \dfrac{1}{2} = 0$
$ \Rightarrow n = - \dfrac{1}{2}$
So $ - \dfrac{1}{2}$ is the required value of (n) for which the G.M of (a) and (b) is$\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
So this is the required answer.
Note: In general there are two means which are most frequently used that is arithmetic mean and the geometric means. A.M between two numbers a and b is $\dfrac{{a + b}}{2}$, the formula of geometric mean is explained above but we can generalize it to n terms as well, the G.M of ${x_1},{x_2},{x_3},{x_4}..........{x_n}{ = ^n}\sqrt {{x_1},{x_2},{x_3},{x_4}..........{x_n}} $.
Complete step-by-step answer:
Given geometric mean (G.M) of (a and b) is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.............. (1)
Now as we know that the G.M of (a) and (b) is $\sqrt {ab} $ ...................... (2)
Therefore both equations (1) and (2) should be equal so equate them we have.
$ \Rightarrow \dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \sqrt {ab} $
Now simplify the above equation we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}\left( {{a^n} + {b^n}} \right)$
Now again simplify we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{a^n} + {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{b^n}$
\[ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} + {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}}\]
Now shifting the variables we have,
\[ \Rightarrow {a^{n + 1}} - {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} = {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}} - {b^{n + 1}}\]
Now take \[{a^{n + \dfrac{1}{2}}}\] common from L.H.S terms and \[{b^{n + \dfrac{1}{2}}}\] common from R.H.S terms we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {\dfrac{{{a^{n + 1}}}}{{{a^{n + \dfrac{1}{2}}}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - \dfrac{{{b^{n + 1}}}}{{{b^{n + \dfrac{1}{2}}}}}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{n + 1 - n - \dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{n + 1 - n - \dfrac{1}{2}}}} \right)\]
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\]
Now cancel out the common terms from L.H.S and R.H.S we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}} = {b^{n + \dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = 1\]
Now as we know 1 can be written as (a/b)0 so use this property in above equation we have,
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
\[ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{^{n + \dfrac{1}{2}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
So on comparing we have,
$ \Rightarrow n + \dfrac{1}{2} = 0$
$ \Rightarrow n = - \dfrac{1}{2}$
So $ - \dfrac{1}{2}$ is the required value of (n) for which the G.M of (a) and (b) is$\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
So this is the required answer.
Note: In general there are two means which are most frequently used that is arithmetic mean and the geometric means. A.M between two numbers a and b is $\dfrac{{a + b}}{2}$, the formula of geometric mean is explained above but we can generalize it to n terms as well, the G.M of ${x_1},{x_2},{x_3},{x_4}..........{x_n}{ = ^n}\sqrt {{x_1},{x_2},{x_3},{x_4}..........{x_n}} $.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

