
For what value of n, the geometric mean of a and b is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
Answer
598.8k+ views
Hint: In this question use the concept that if we have two numbers a and b then the geometric mean of them will be $\sqrt {ab} $, compare the given geometric mean with this standard mean to get the value of n.
Complete step-by-step answer:
Given geometric mean (G.M) of (a and b) is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.............. (1)
Now as we know that the G.M of (a) and (b) is $\sqrt {ab} $ ...................... (2)
Therefore both equations (1) and (2) should be equal so equate them we have.
$ \Rightarrow \dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \sqrt {ab} $
Now simplify the above equation we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}\left( {{a^n} + {b^n}} \right)$
Now again simplify we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{a^n} + {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{b^n}$
\[ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} + {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}}\]
Now shifting the variables we have,
\[ \Rightarrow {a^{n + 1}} - {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} = {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}} - {b^{n + 1}}\]
Now take \[{a^{n + \dfrac{1}{2}}}\] common from L.H.S terms and \[{b^{n + \dfrac{1}{2}}}\] common from R.H.S terms we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {\dfrac{{{a^{n + 1}}}}{{{a^{n + \dfrac{1}{2}}}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - \dfrac{{{b^{n + 1}}}}{{{b^{n + \dfrac{1}{2}}}}}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{n + 1 - n - \dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{n + 1 - n - \dfrac{1}{2}}}} \right)\]
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\]
Now cancel out the common terms from L.H.S and R.H.S we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}} = {b^{n + \dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = 1\]
Now as we know 1 can be written as (a/b)0 so use this property in above equation we have,
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
\[ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{^{n + \dfrac{1}{2}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
So on comparing we have,
$ \Rightarrow n + \dfrac{1}{2} = 0$
$ \Rightarrow n = - \dfrac{1}{2}$
So $ - \dfrac{1}{2}$ is the required value of (n) for which the G.M of (a) and (b) is$\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
So this is the required answer.
Note: In general there are two means which are most frequently used that is arithmetic mean and the geometric means. A.M between two numbers a and b is $\dfrac{{a + b}}{2}$, the formula of geometric mean is explained above but we can generalize it to n terms as well, the G.M of ${x_1},{x_2},{x_3},{x_4}..........{x_n}{ = ^n}\sqrt {{x_1},{x_2},{x_3},{x_4}..........{x_n}} $.
Complete step-by-step answer:
Given geometric mean (G.M) of (a and b) is $\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.............. (1)
Now as we know that the G.M of (a) and (b) is $\sqrt {ab} $ ...................... (2)
Therefore both equations (1) and (2) should be equal so equate them we have.
$ \Rightarrow \dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}} = \sqrt {ab} $
Now simplify the above equation we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}\left( {{a^n} + {b^n}} \right)$
Now again simplify we have,
$ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{a^n} + {a^{\dfrac{1}{2}}}{b^{\dfrac{1}{2}}}{b^n}$
\[ \Rightarrow {a^{n + 1}} + {b^{n + 1}} = {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} + {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}}\]
Now shifting the variables we have,
\[ \Rightarrow {a^{n + 1}} - {a^{n + \dfrac{1}{2}}}{b^{\dfrac{1}{2}}} = {a^{\dfrac{1}{2}}}{b^{n + \dfrac{1}{2}}} - {b^{n + 1}}\]
Now take \[{a^{n + \dfrac{1}{2}}}\] common from L.H.S terms and \[{b^{n + \dfrac{1}{2}}}\] common from R.H.S terms we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {\dfrac{{{a^{n + 1}}}}{{{a^{n + \dfrac{1}{2}}}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - \dfrac{{{b^{n + 1}}}}{{{b^{n + \dfrac{1}{2}}}}}} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{n + 1 - n - \dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{n + 1 - n - \dfrac{1}{2}}}} \right)\]
\[ \Rightarrow {a^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right) = {b^{n + \dfrac{1}{2}}}\left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\]
Now cancel out the common terms from L.H.S and R.H.S we have,
\[ \Rightarrow {a^{n + \dfrac{1}{2}}} = {b^{n + \dfrac{1}{2}}}\]
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = 1\]
Now as we know 1 can be written as (a/b)0 so use this property in above equation we have,
\[ \Rightarrow \dfrac{{{a^{n + \dfrac{1}{2}}}}}{{{b^{n + \dfrac{1}{2}}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
\[ \Rightarrow {\left( {\dfrac{a}{b}} \right)^{^{n + \dfrac{1}{2}}}} = {\left( {\dfrac{a}{b}} \right)^0}\]
So on comparing we have,
$ \Rightarrow n + \dfrac{1}{2} = 0$
$ \Rightarrow n = - \dfrac{1}{2}$
So $ - \dfrac{1}{2}$ is the required value of (n) for which the G.M of (a) and (b) is$\dfrac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$.
So this is the required answer.
Note: In general there are two means which are most frequently used that is arithmetic mean and the geometric means. A.M between two numbers a and b is $\dfrac{{a + b}}{2}$, the formula of geometric mean is explained above but we can generalize it to n terms as well, the G.M of ${x_1},{x_2},{x_3},{x_4}..........{x_n}{ = ^n}\sqrt {{x_1},{x_2},{x_3},{x_4}..........{x_n}} $.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

