
For what value of k does the equation \[{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} + 11x - 5{\text{y + 2 = 0}}\] represent a pair of lines?
Answer
600k+ views
Hint: In order to solve to this problem, we must remember the condition when general equation of 2nd degree ${\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}}$ represent a pair of lines.
Complete step-by-step answer:
We know that,
A general equation of 2nd degree ${\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}}$ represent a pair of lines if ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\text{a}}&{\text{h}}&{\text{g}} \\
{\text{h}}&{\text{b}}&{\text{f}} \\
{\text{g}}&{\text{f}}&{\text{c}}
\end{array}} \right| = 0$
We have,
\[{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} + 11x - 5{\text{y + 2 = 0}}\]
So on comparing this with general equation of 2nd degree ${\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}}$ we found
∴a=12, h=k, b=2, g=$\dfrac{{11}}{2}$, f = $\dfrac{{ - 5}}{2}$ and c=2
∴ ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{12}&{\text{k}}&{\dfrac{{11}}{2}} \\
{\text{k}}&2&{\dfrac{{ - 5}}{2}} \\
{\dfrac{{11}}{2}}&{\dfrac{{ - 5}}{2}}&2
\end{array}} \right| = 0$
Expanding we get
$ \Rightarrow 12\left( {4 - \dfrac{{25}}{4}} \right) - {\text{k}}\left( {2{\text{k + }}\dfrac{{55}}{4}} \right) + \dfrac{{11}}{2}\left( {\dfrac{{ - 5{\text{k}}}}{2} - 11} \right) = 0$
On further solving
$ \Rightarrow 12\left( { - \dfrac{9}{4}} \right) - 2{{\text{k}}^2} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{121}}{2} = 0$
$ \Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{55}}{4} + \dfrac{{55}}{4}} \right) - \dfrac{{121}}{2} = 0$
On simplifying
$ \Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{110}}{4}} \right) - \dfrac{{121}}{2} = 0$
multiply both sides by Minus 1
$ \Rightarrow 2{{\text{k}}^2}{\text{ + k}}\left( {\dfrac{{110}}{4}} \right) + \dfrac{{175}}{2} = 0$
\[ \Rightarrow {\text{8}}{{\text{k}}^2}{\text{ + 110k}} + 350 = 0\]
On taking 2 common
\[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\]
Here we have, a quadratic equation \[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\] in terms of k
Sridharacharya formula is actually the quadratic formula, used for finding the roots of a quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] , where a not equal to 0 , & a, b, c are real coefficients of the equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]
Being quadratic it has 2 roots.
X = $\dfrac{{\left( { - {\text{b + }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}{\text{ & }}\dfrac{{\left( { - {\text{b - }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}$ (1)
On comparing the given equation \[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\] with the general quadratic equation \[{\text{a}}{{\text{k}}^2}{\text{ + bk + c = 0}}\] we got values of coefficients a = 4, b = 55, c = 175
On putting the value of coefficients a, b, c in equation (1)
${\text{k = }}\dfrac{{\left( { - (55){\text{ + }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}{\text{ & }}\dfrac{{\left( { - (55){\text{ - }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}$
${\text{k = }}\dfrac{{\left( {{\text{ - 55 + }}\sqrt {225} } \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}\sqrt {225} } \right)}}{8}$
${\text{k = }}\dfrac{{\left( {{\text{ - 55 + 15}}} \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}15} \right)}}{8}$
${\text{k = - 5 & }}\dfrac{{\left( {{\text{ - 35}}} \right)}}{4}$
We know that if discriminant D $ \geqslant {\text{0}}$ then it will give real and distinct roots.
Here D= ${\text{ = }}\sqrt {{{(55)}^2} - 4 \times 8 \times (175)} {\text{ = }}\sqrt {225} {\text{ }} \geqslant {\text{0}}$ Therefore we got two distinct real roots ${{\text{k}}_1}{\text{ = }} - 5{\text{ & }}{{\text{k}}_2}{\text{ = }}\dfrac{{ - 35}}{4}$
${{\text{k}}_1}{\text{ = - 5 & }}{{\text{k}}_2}{\text{ = - 8}}{\text{.75}}$
Hence we got two values of k for a pair of straight lines.
Note: Whenever we came up with this type of problem where we are given general equation of 2nd degree then to find the unknown values just like k in above question, we can also use the condition $\vartriangle = {\text{ abc + 2fgh - a}}{{\text{f}}^2} - {\text{b}}{{\text{g}}^2} - {\text{c}}{{\text{h}}^2} = 0$. Hence we can get the required value of k.
Complete step-by-step answer:
We know that,
A general equation of 2nd degree ${\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}}$ represent a pair of lines if ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{\text{a}}&{\text{h}}&{\text{g}} \\
{\text{h}}&{\text{b}}&{\text{f}} \\
{\text{g}}&{\text{f}}&{\text{c}}
\end{array}} \right| = 0$
We have,
\[{\text{12}}{{\text{x}}^2} + 2{\text{kxy + 2}}{{\text{y}}^2} + 11x - 5{\text{y + 2 = 0}}\]
So on comparing this with general equation of 2nd degree ${\text{a}}{{\text{x}}^2} + 2{\text{hxy + b}}{{\text{y}}^2} + 2gx + 2{\text{fy + c = 0}}$ we found
∴a=12, h=k, b=2, g=$\dfrac{{11}}{2}$, f = $\dfrac{{ - 5}}{2}$ and c=2
∴ ${\text{D = }}\left| {\begin{array}{*{20}{c}}
{12}&{\text{k}}&{\dfrac{{11}}{2}} \\
{\text{k}}&2&{\dfrac{{ - 5}}{2}} \\
{\dfrac{{11}}{2}}&{\dfrac{{ - 5}}{2}}&2
\end{array}} \right| = 0$
Expanding we get
$ \Rightarrow 12\left( {4 - \dfrac{{25}}{4}} \right) - {\text{k}}\left( {2{\text{k + }}\dfrac{{55}}{4}} \right) + \dfrac{{11}}{2}\left( {\dfrac{{ - 5{\text{k}}}}{2} - 11} \right) = 0$
On further solving
$ \Rightarrow 12\left( { - \dfrac{9}{4}} \right) - 2{{\text{k}}^2} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{55{\text{k}}}}{4} - \dfrac{{121}}{2} = 0$
$ \Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{55}}{4} + \dfrac{{55}}{4}} \right) - \dfrac{{121}}{2} = 0$
On simplifying
$ \Rightarrow - 27 - 2{{\text{k}}^2} - {\text{k}}\left( {\dfrac{{110}}{4}} \right) - \dfrac{{121}}{2} = 0$
multiply both sides by Minus 1
$ \Rightarrow 2{{\text{k}}^2}{\text{ + k}}\left( {\dfrac{{110}}{4}} \right) + \dfrac{{175}}{2} = 0$
\[ \Rightarrow {\text{8}}{{\text{k}}^2}{\text{ + 110k}} + 350 = 0\]
On taking 2 common
\[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\]
Here we have, a quadratic equation \[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\] in terms of k
Sridharacharya formula is actually the quadratic formula, used for finding the roots of a quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] , where a not equal to 0 , & a, b, c are real coefficients of the equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]
Being quadratic it has 2 roots.
X = $\dfrac{{\left( { - {\text{b + }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}{\text{ & }}\dfrac{{\left( { - {\text{b - }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}$ (1)
On comparing the given equation \[ \Rightarrow 4{{\text{k}}^2}{\text{ + 55k}} + 175 = 0\] with the general quadratic equation \[{\text{a}}{{\text{k}}^2}{\text{ + bk + c = 0}}\] we got values of coefficients a = 4, b = 55, c = 175
On putting the value of coefficients a, b, c in equation (1)
${\text{k = }}\dfrac{{\left( { - (55){\text{ + }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}{\text{ & }}\dfrac{{\left( { - (55){\text{ - }}\sqrt {{{(55)}^2} - 4 \times (4) \times (175)} } \right)}}{{2 \times 4}}$
${\text{k = }}\dfrac{{\left( {{\text{ - 55 + }}\sqrt {225} } \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}\sqrt {225} } \right)}}{8}$
${\text{k = }}\dfrac{{\left( {{\text{ - 55 + 15}}} \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{ - 55 - }}15} \right)}}{8}$
${\text{k = - 5 & }}\dfrac{{\left( {{\text{ - 35}}} \right)}}{4}$
We know that if discriminant D $ \geqslant {\text{0}}$ then it will give real and distinct roots.
Here D= ${\text{ = }}\sqrt {{{(55)}^2} - 4 \times 8 \times (175)} {\text{ = }}\sqrt {225} {\text{ }} \geqslant {\text{0}}$ Therefore we got two distinct real roots ${{\text{k}}_1}{\text{ = }} - 5{\text{ & }}{{\text{k}}_2}{\text{ = }}\dfrac{{ - 35}}{4}$
${{\text{k}}_1}{\text{ = - 5 & }}{{\text{k}}_2}{\text{ = - 8}}{\text{.75}}$
Hence we got two values of k for a pair of straight lines.
Note: Whenever we came up with this type of problem where we are given general equation of 2nd degree then to find the unknown values just like k in above question, we can also use the condition $\vartriangle = {\text{ abc + 2fgh - a}}{{\text{f}}^2} - {\text{b}}{{\text{g}}^2} - {\text{c}}{{\text{h}}^2} = 0$. Hence we can get the required value of k.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

