
For two unimodular complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$, ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$ is
\[\begin{align}
& A.\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
\end{matrix} \right] \\
& B.\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& C.\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
& D.\text{ None of these} \\
\end{align}\]
Answer
576.9k+ views
Hint: In this question, we are given two unimodular complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ and we have to find value of given ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$. We will first suppose these two matrix as variable and find their inverse using ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA$ where $\left| A \right|$ is determinant of A and adjA is adjoint of a. Adjoint of A will be found by taking the transpose of the cofactor matrix. We will use property as $z\overline{z}={{\left| z \right|}^{2}}$ where $\overline{z}$ is conjugate of z. Also cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Complete step by step answer:
Here, we have to find value of ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$.
Since, it is given that, complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ are unimodular, therefore, their modulus is 1, that is $\left| {{z}_{1}} \right|\text{=1 and }\left| {{z}_{2}} \right|=1$.
Now, let us suppose
\[A=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\text{ and }B=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, we have to find ${{A}^{-1}}{{B}^{-1}}$. For finding ${{A}^{-1}}$. Let's first find $\left| A \right|$.
\[\begin{align}
& \left| A \right|=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}+\overline{{{z}_{2}}}{{z}_{2}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$,
Therefore, $\left| A \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$.
So, $\left| A \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Now, let's find adjA.
Adjoint of any matrix is the transpose of the cofactor matrix.
As we know, cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Therefore, $\text{cofactor matrix of }A=\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]$
\[\text{Adjoint of }A={{\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA=\dfrac{1}{2}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 1 \right)\]
For finding ${{B}^{-1}}$. Let us first find $\left| B \right|$.
\[\begin{align}
& \left| B \right|=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right] \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$ therefore, $\left| B \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$ so, $\left| B \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Let's find adjB.
$\text{cofactor matrix of }B=\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]$
\[\text{Adjoint of }B={{\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\]
Hence, \[{{B}^{-1}}=\dfrac{1}{\left| B \right|}adjB=\dfrac{1}{2}\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 2 \right)\]
We want ${{A}^{-1}}{{B}^{-1}}$ therefore, let's multiply (1) and (2) together, we get:
\[\begin{align}
& {{A}^{-1}}{{B}^{-1}}=\dfrac{1}{4}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} & 0 \\
0 & {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{1}^{2}}+{{1}^{2}} & 0 \\
0 & {{1}^{2}}+{{1}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
\end{align}\]
Hence, \[{{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right]\]
So, the correct answer is “Option C”.
Note: Students should carefully calculate determinants of the matrix since small sign mistakes can completely change the answer. Students can get confused between A and B matrices, ${{z}_{1}}\text{ and }{{z}_{2}}$ their conjugate and negative signs. So take care while copying them and solving them. For finding adjoint of the matrix, don’t forget to find transpose.
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$. We will first suppose these two matrix as variable and find their inverse using ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA$ where $\left| A \right|$ is determinant of A and adjA is adjoint of a. Adjoint of A will be found by taking the transpose of the cofactor matrix. We will use property as $z\overline{z}={{\left| z \right|}^{2}}$ where $\overline{z}$ is conjugate of z. Also cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Complete step by step answer:
Here, we have to find value of ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$.
Since, it is given that, complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ are unimodular, therefore, their modulus is 1, that is $\left| {{z}_{1}} \right|\text{=1 and }\left| {{z}_{2}} \right|=1$.
Now, let us suppose
\[A=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\text{ and }B=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, we have to find ${{A}^{-1}}{{B}^{-1}}$. For finding ${{A}^{-1}}$. Let's first find $\left| A \right|$.
\[\begin{align}
& \left| A \right|=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}+\overline{{{z}_{2}}}{{z}_{2}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$,
Therefore, $\left| A \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$.
So, $\left| A \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Now, let's find adjA.
Adjoint of any matrix is the transpose of the cofactor matrix.
As we know, cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Therefore, $\text{cofactor matrix of }A=\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]$
\[\text{Adjoint of }A={{\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA=\dfrac{1}{2}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 1 \right)\]
For finding ${{B}^{-1}}$. Let us first find $\left| B \right|$.
\[\begin{align}
& \left| B \right|=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right] \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$ therefore, $\left| B \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$ so, $\left| B \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Let's find adjB.
$\text{cofactor matrix of }B=\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]$
\[\text{Adjoint of }B={{\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\]
Hence, \[{{B}^{-1}}=\dfrac{1}{\left| B \right|}adjB=\dfrac{1}{2}\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 2 \right)\]
We want ${{A}^{-1}}{{B}^{-1}}$ therefore, let's multiply (1) and (2) together, we get:
\[\begin{align}
& {{A}^{-1}}{{B}^{-1}}=\dfrac{1}{4}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} & 0 \\
0 & {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{1}^{2}}+{{1}^{2}} & 0 \\
0 & {{1}^{2}}+{{1}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
\end{align}\]
Hence, \[{{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right]\]
So, the correct answer is “Option C”.
Note: Students should carefully calculate determinants of the matrix since small sign mistakes can completely change the answer. Students can get confused between A and B matrices, ${{z}_{1}}\text{ and }{{z}_{2}}$ their conjugate and negative signs. So take care while copying them and solving them. For finding adjoint of the matrix, don’t forget to find transpose.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

