
For the reaction $ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $ , what is the value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} $ ?
(A) $ {{RT}} $
(B) $ {{{(RT)}}^{ - 1}} $
(C) $ {{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
(D) $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $
Answer
451.5k+ views
Hint: In the above question, the reaction is given and we have to find out the ratio $ {{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} $ . Since, change in moles of gas can be found out from the reaction, we can find the ratio by using the relationship between $ {{{K}}_{{c}}} $ and $ {{{K}}_{{p}}} $ .
Formula Used
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Where $ {{{K}}_{{p}}} $ = equilibrium constant considering the partial pressure
$ {{{K}}_{{c}}} $ = equilibrium constant considering the concentration
R = universal gas constant
T= temperature
$ {{\Delta n}} $ = change in number of moles of gas.
Complete step by step solution:
$ {{{K}}_{{p}}} $ is the equilibrium constant which is calculated from the partial pressures of the reaction. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
$ {{{K}}_{{c}}} $ is the equilibrium constant which is calculated from the concentration of the reaction. It is used to express the relationship between product concentration and reactant concentration. It is also a unitless number.
In the above question, we have the following reaction:
$ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $
Here, $ {{\Delta n}} $ can be calculated as:
$ {{\Delta n}} $ = number of moles of gaseous product – number of moles of gaseous reactant
Hence,
$ {{\Delta n}} $ = $ 1 - \left( {1 + \dfrac{1}{2}} \right) = - \dfrac{1}{2} $
Now we can use the relation:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Substituting the value, we get:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Rearranging the equation, we get:
$ \dfrac{{{{{K}}_{{p}}}}}{{{{{K}}_{{c}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Reciprocating both the sides we get:
$ \dfrac{{{{{K}}_{{c}}}}}{{{{{K}}_{{p}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{1}}}{{{2}}}}} $
$ \therefore $ The value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{p}}} $ is $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $ .
Hence, the correct option is option D.
Note:
When $ {{\Delta n}} $ =0 , the value of $ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}} $
While calculating the values of $ {{{K}}_{{p}}} $ and $ {{{K}}_{{c}}} $ using the above formula, we should have the unit of R in $ \dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ , i.e., the value of R is equal to $ {{0}}{{.08206}}\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ and the temperature should be in kelvin(K).
Formula Used
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Where $ {{{K}}_{{p}}} $ = equilibrium constant considering the partial pressure
$ {{{K}}_{{c}}} $ = equilibrium constant considering the concentration
R = universal gas constant
T= temperature
$ {{\Delta n}} $ = change in number of moles of gas.
Complete step by step solution:
$ {{{K}}_{{p}}} $ is the equilibrium constant which is calculated from the partial pressures of the reaction. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
$ {{{K}}_{{c}}} $ is the equilibrium constant which is calculated from the concentration of the reaction. It is used to express the relationship between product concentration and reactant concentration. It is also a unitless number.
In the above question, we have the following reaction:
$ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $
Here, $ {{\Delta n}} $ can be calculated as:
$ {{\Delta n}} $ = number of moles of gaseous product – number of moles of gaseous reactant
Hence,
$ {{\Delta n}} $ = $ 1 - \left( {1 + \dfrac{1}{2}} \right) = - \dfrac{1}{2} $
Now we can use the relation:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Substituting the value, we get:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Rearranging the equation, we get:
$ \dfrac{{{{{K}}_{{p}}}}}{{{{{K}}_{{c}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Reciprocating both the sides we get:
$ \dfrac{{{{{K}}_{{c}}}}}{{{{{K}}_{{p}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{1}}}{{{2}}}}} $
$ \therefore $ The value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{p}}} $ is $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $ .
Hence, the correct option is option D.
Note:
When $ {{\Delta n}} $ =0 , the value of $ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}} $
While calculating the values of $ {{{K}}_{{p}}} $ and $ {{{K}}_{{c}}} $ using the above formula, we should have the unit of R in $ \dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ , i.e., the value of R is equal to $ {{0}}{{.08206}}\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ and the temperature should be in kelvin(K).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
