
For the reaction $ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $ , what is the value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} $ ?
(A) $ {{RT}} $
(B) $ {{{(RT)}}^{ - 1}} $
(C) $ {{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
(D) $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $
Answer
537k+ views
Hint: In the above question, the reaction is given and we have to find out the ratio $ {{{K}}_{{c}}}{{/}}{{{K}}_{{P}}} $ . Since, change in moles of gas can be found out from the reaction, we can find the ratio by using the relationship between $ {{{K}}_{{c}}} $ and $ {{{K}}_{{p}}} $ .
Formula Used
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Where $ {{{K}}_{{p}}} $ = equilibrium constant considering the partial pressure
$ {{{K}}_{{c}}} $ = equilibrium constant considering the concentration
R = universal gas constant
T= temperature
$ {{\Delta n}} $ = change in number of moles of gas.
Complete step by step solution:
$ {{{K}}_{{p}}} $ is the equilibrium constant which is calculated from the partial pressures of the reaction. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
$ {{{K}}_{{c}}} $ is the equilibrium constant which is calculated from the concentration of the reaction. It is used to express the relationship between product concentration and reactant concentration. It is also a unitless number.
In the above question, we have the following reaction:
$ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $
Here, $ {{\Delta n}} $ can be calculated as:
$ {{\Delta n}} $ = number of moles of gaseous product – number of moles of gaseous reactant
Hence,
$ {{\Delta n}} $ = $ 1 - \left( {1 + \dfrac{1}{2}} \right) = - \dfrac{1}{2} $
Now we can use the relation:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Substituting the value, we get:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Rearranging the equation, we get:
$ \dfrac{{{{{K}}_{{p}}}}}{{{{{K}}_{{c}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Reciprocating both the sides we get:
$ \dfrac{{{{{K}}_{{c}}}}}{{{{{K}}_{{p}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{1}}}{{{2}}}}} $
$ \therefore $ The value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{p}}} $ is $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $ .
Hence, the correct option is option D.
Note:
When $ {{\Delta n}} $ =0 , the value of $ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}} $
While calculating the values of $ {{{K}}_{{p}}} $ and $ {{{K}}_{{c}}} $ using the above formula, we should have the unit of R in $ \dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ , i.e., the value of R is equal to $ {{0}}{{.08206}}\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ and the temperature should be in kelvin(K).
Formula Used
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Where $ {{{K}}_{{p}}} $ = equilibrium constant considering the partial pressure
$ {{{K}}_{{c}}} $ = equilibrium constant considering the concentration
R = universal gas constant
T= temperature
$ {{\Delta n}} $ = change in number of moles of gas.
Complete step by step solution:
$ {{{K}}_{{p}}} $ is the equilibrium constant which is calculated from the partial pressures of the reaction. It is used to express the relationship between product pressures and reactant pressures. It is a unitless number, although it relates the pressures.
$ {{{K}}_{{c}}} $ is the equilibrium constant which is calculated from the concentration of the reaction. It is used to express the relationship between product concentration and reactant concentration. It is also a unitless number.
In the above question, we have the following reaction:
$ {{CO(g) + }}\dfrac{{{1}}}{{{2}}}{{{O}}_{{2}}}{{(g)}} \rightleftharpoons {{C}}{{{O}}_{{2}}}{{(g)}} $
Here, $ {{\Delta n}} $ can be calculated as:
$ {{\Delta n}} $ = number of moles of gaseous product – number of moles of gaseous reactant
Hence,
$ {{\Delta n}} $ = $ 1 - \left( {1 + \dfrac{1}{2}} \right) = - \dfrac{1}{2} $
Now we can use the relation:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{{{\Delta n}}}} $
Substituting the value, we get:
$ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}}{{{(RT)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Rearranging the equation, we get:
$ \dfrac{{{{{K}}_{{p}}}}}{{{{{K}}_{{c}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{{ - 1}}}}{{{2}}}}} $
Reciprocating both the sides we get:
$ \dfrac{{{{{K}}_{{c}}}}}{{{{{K}}_{{p}}}}}{{ = (RT}}{{{)}}^{\dfrac{{{1}}}{{{2}}}}} $
$ \therefore $ The value of $ {{{K}}_{{c}}}{{/}}{{{K}}_{{p}}} $ is $ {{{(RT)}}^{\dfrac{{{1}}}{{{2}}}}} $ .
Hence, the correct option is option D.
Note:
When $ {{\Delta n}} $ =0 , the value of $ {{{K}}_{{p}}}{{ = }}{{{K}}_{{c}}} $
While calculating the values of $ {{{K}}_{{p}}} $ and $ {{{K}}_{{c}}} $ using the above formula, we should have the unit of R in $ \dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ , i.e., the value of R is equal to $ {{0}}{{.08206}}\dfrac{{{{L}}{{.atm}}}}{{{{mol}}{{.K}}}} $ and the temperature should be in kelvin(K).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Differentiate between red algae and brown algae class 11 biology CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

