
For the matrix \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right]\], show that \[a{A^{ - 1}} = \left( {{a^2} + bc + 1} \right)I - aA\].
Answer
511.8k+ views
Hint: First, we will use the formula of the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\] by, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant\[A\]. Then we will find the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\] and then substitute them in the formula of inverse of matrix and multiply it with \[a\]for left sides of the equation. Then we will substitute the value of A and I in the right hand side of the equation to show the required result.
Complete step-by-step answer:
We are given that the matrix is \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right]\].
We know that the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
h&i \\
j&k
\end{array}} \right]\] by using the formula, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
k&{ - i} \\
{ - j}&h
\end{array}} \right]\], where \[\left| A \right|\] is the determinant of \[A\].
Finding the value of \[h\], \[i\], \[k\] and \[l\] from the given matrix \[A\], we get
\[ \Rightarrow h = a\]
\[ \Rightarrow i = b\]
\[ \Rightarrow j = c\]
\[ \Rightarrow l = \dfrac{{1 + bc}}{a}\]
Then we will compute the value of determinant of \[A\] using the above values, we get
\[
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right| \\
\Rightarrow \left| A \right| = a\left( {\dfrac{{1 + bc}}{a}} \right) - bc \\
\Rightarrow \left| A \right| = 1 + bc - bc \\
\Rightarrow \left| A \right| = 1 \\
\]
Substituting the above values of the determinant of A, \[h\], \[i\], \[j\] and \[k\] in the formula of inverse of matrix, we get
\[
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right] \\
\Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right] \\
\]
Multiplying the above equation by \[a\] on both sides, we get
\[ \Rightarrow a{A^{ - 1}} = a\left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\
c&a
\end{array}} \right]\]
Using the property in the above equation of matrix if a matrix multiplies a constant, then every element of the matrix will multiply it, we get
\[
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{a\left( {\dfrac{{1 + bc}}{a}} \right)}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right] \\
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{1 + bc}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(1)}} \\
\]
Now we will substitute the value of matrix A and identity matrix in the equation\[\left( {{a^2} + bc + 1} \right)I - aA\], we get
\[
\Rightarrow \left( {{a^2} + bc + 1} \right)\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] - a\left[ {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{{a^2}}&{ab} \\
{ac}&{a\left( {\dfrac{{1 + bc}}{a}} \right)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{{a^2}}&{ab} \\
{ac}&{1 + bc}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + bc + 1 - {a^2}}&{0 - ab} \\
{0 - ac}&{{a^2} + bc + 1 - bc - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{bc + 1}&{ - ab} \\
{ - ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(2)}} \\
\]
From equation (1) and equation (2), we get
\[a{A^{ - 1}} = \left( {{a^2} + bc + 1} \right)I - aA\]
Hence, proved.
Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \[\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\] is the adjoint matrix of \[A\]. We can remember this matrix to save some time in the \[2 \times 2\] matrix but we have to compute the value of \[adjA\] in the matrix with more than 2 rows and 2 columns. When students know the formula of inverse, the solution is very simple and easy. We need to know that an identity matrix I is a \[2 \times 2\] matrix \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\].
a&b \\
c&d
\end{array}} \right]\] by, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\], where \[\left| A \right|\] is the determinant\[A\]. Then we will find the value of \[a\], \[b\], \[c\] and \[d\] from the given matrix \[A\] and then substitute them in the formula of inverse of matrix and multiply it with \[a\]for left sides of the equation. Then we will substitute the value of A and I in the right hand side of the equation to show the required result.
Complete step-by-step answer:
We are given that the matrix is \[A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right]\].
We know that the inverse of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
h&i \\
j&k
\end{array}} \right]\] by using the formula, \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
k&{ - i} \\
{ - j}&h
\end{array}} \right]\], where \[\left| A \right|\] is the determinant of \[A\].
Finding the value of \[h\], \[i\], \[k\] and \[l\] from the given matrix \[A\], we get
\[ \Rightarrow h = a\]
\[ \Rightarrow i = b\]
\[ \Rightarrow j = c\]
\[ \Rightarrow l = \dfrac{{1 + bc}}{a}\]
Then we will compute the value of determinant of \[A\] using the above values, we get
\[
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right| \\
\Rightarrow \left| A \right| = a\left( {\dfrac{{1 + bc}}{a}} \right) - bc \\
\Rightarrow \left| A \right| = 1 + bc - bc \\
\Rightarrow \left| A \right| = 1 \\
\]
Substituting the above values of the determinant of A, \[h\], \[i\], \[j\] and \[k\] in the formula of inverse of matrix, we get
\[
\Rightarrow {A^{ - 1}} = \dfrac{1}{1}\left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right] \\
\Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right] \\
\]
Multiplying the above equation by \[a\] on both sides, we get
\[ \Rightarrow a{A^{ - 1}} = a\left[ {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\
c&a
\end{array}} \right]\]
Using the property in the above equation of matrix if a matrix multiplies a constant, then every element of the matrix will multiply it, we get
\[
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{a\left( {\dfrac{{1 + bc}}{a}} \right)}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right] \\
\Rightarrow a{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{1 + bc}&{ab} \\
{ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(1)}} \\
\]
Now we will substitute the value of matrix A and identity matrix in the equation\[\left( {{a^2} + bc + 1} \right)I - aA\], we get
\[
\Rightarrow \left( {{a^2} + bc + 1} \right)\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] - a\left[ {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{{a^2}}&{ab} \\
{ac}&{a\left( {\dfrac{{1 + bc}}{a}} \right)}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{\left( {{a^2} + bc + 1} \right)}&0 \\
0&{\left( {{a^2} + bc + 1} \right)}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{{a^2}}&{ab} \\
{ac}&{1 + bc}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{{a^2} + bc + 1 - {a^2}}&{0 - ab} \\
{0 - ac}&{{a^2} + bc + 1 - bc - 1}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{bc + 1}&{ - ab} \\
{ - ac}&{{a^2}}
\end{array}} \right]{\text{ ......eq.(2)}} \\
\]
From equation (1) and equation (2), we get
\[a{A^{ - 1}} = \left( {{a^2} + bc + 1} \right)I - aA\]
Hence, proved.
Note: In these types of questions, the key concept is to find the inverse by putting the values in the formula of inverse. Students should know that the matrix \[\left[ {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right]\] is the adjoint matrix of \[A\]. We can remember this matrix to save some time in the \[2 \times 2\] matrix but we have to compute the value of \[adjA\] in the matrix with more than 2 rows and 2 columns. When students know the formula of inverse, the solution is very simple and easy. We need to know that an identity matrix I is a \[2 \times 2\] matrix \[\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
