
For the matrices $A$and $B$, verify that ${\left( {AB} \right)^T} = {B^T}{A^T}$, where $A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]$, \[B = \left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]\]
Answer
557.7k+ views
Hint: Here, we are required to verify that ${\left( {AB} \right)^T} = {B^T} \cdot {A^T}$. We are given the two matrices $A$ and $B$. Now, in order to verify this, we will first of all multiply both the matrices to find $AB$. Now, interchanging its rows and columns will give us ${\left( {AB} \right)^T}$. Similarly, we will find the individual transpose of both the matrices and multiply them together to verify that LHS $ = $ RHS.
Complete step-by-step answer:
Given matrices are:
$A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]$ and \[B = \left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]\]
Now, in order to verify ${\left( {AB} \right)^T} = {B^T}{A^T}$
First of all, we will multiply the matrices $A$ and $B$
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]$
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{\left( {1 \times 1} \right) + \left( {3 \times 2} \right)}&{\left( {1 \times 4} \right) + \left( {3 \times 5} \right)} \\
{\left( {2 \times 1} \right) + \left( {4 \times 2} \right)}&{\left( {2 \times 4} \right) + \left( {4 \times 5} \right)}
\end{array}} \right]$
Solving further,
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
7&{19} \\
{10}&{28}
\end{array}} \right]$
Now, when we do the transpose of any given matrix, then, its rows becomes the columns and the columns become the rows. Hence, the rows and columns interchange with each other.
Hence, ${\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Therefore, LHS $ = {\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Now, since,
$A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]$
Hence, ${A^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]$………………………………….$\left( 1 \right)$
Also, \[B = \left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]\]
Hence, \[{B^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
4&5
\end{array}} \right]\]……………………………$\left( 2 \right)$
Now, RHS $ = {B^T}{A^T}$
Hence, substituting the values from $\left( 1 \right)$ and $\left( 2 \right)$, we get,
RHS$ = {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
4&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]$
$ \Rightarrow {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{\left( {1 \times 1} \right) + \left( {2 \times 3} \right)}&{\left( {1 \times 2} \right) + \left( {2 \times 4} \right)} \\
{\left( {4 \times 1} \right) + \left( {5 \times 3} \right)}&{\left( {4 \times 2} \right) + \left( {5 \times 4} \right)}
\end{array}} \right]$
Solving further, we get,
$ \Rightarrow {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Also, we have proved that ${\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Clearly, LHS $ = $ RHS
Hence, ${\left( {AB} \right)^T} = {B^T}{A^T}$
Thus, verified
Note: A matrix is a rectangular array or table of numbers, symbols or expressions, arranged in rows and columns. Now, in order to multiply two matrices it is really important that the number of columns in the first matrix must be equal to the number of rows in the second matrix. But since, in this question, we had both the matrices of order $2 \times 2$, i.e. square matrices, there was no need to check for this multiplication rule before multiplying them together. Also, when we interchange the rows with columns, we find the transpose of that particular matrix.
Complete step-by-step answer:
Given matrices are:
$A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]$ and \[B = \left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]\]
Now, in order to verify ${\left( {AB} \right)^T} = {B^T}{A^T}$
First of all, we will multiply the matrices $A$ and $B$
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]$
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{\left( {1 \times 1} \right) + \left( {3 \times 2} \right)}&{\left( {1 \times 4} \right) + \left( {3 \times 5} \right)} \\
{\left( {2 \times 1} \right) + \left( {4 \times 2} \right)}&{\left( {2 \times 4} \right) + \left( {4 \times 5} \right)}
\end{array}} \right]$
Solving further,
$ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
7&{19} \\
{10}&{28}
\end{array}} \right]$
Now, when we do the transpose of any given matrix, then, its rows becomes the columns and the columns become the rows. Hence, the rows and columns interchange with each other.
Hence, ${\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Therefore, LHS $ = {\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Now, since,
$A = \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right]$
Hence, ${A^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]$………………………………….$\left( 1 \right)$
Also, \[B = \left[ {\begin{array}{*{20}{c}}
1&4 \\
2&5
\end{array}} \right]\]
Hence, \[{B^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
4&5
\end{array}} \right]\]……………………………$\left( 2 \right)$
Now, RHS $ = {B^T}{A^T}$
Hence, substituting the values from $\left( 1 \right)$ and $\left( 2 \right)$, we get,
RHS$ = {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
1&2 \\
4&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right]$
$ \Rightarrow {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
{\left( {1 \times 1} \right) + \left( {2 \times 3} \right)}&{\left( {1 \times 2} \right) + \left( {2 \times 4} \right)} \\
{\left( {4 \times 1} \right) + \left( {5 \times 3} \right)}&{\left( {4 \times 2} \right) + \left( {5 \times 4} \right)}
\end{array}} \right]$
Solving further, we get,
$ \Rightarrow {B^T}{A^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Also, we have proved that ${\left( {AB} \right)^T} = \left[ {\begin{array}{*{20}{c}}
7&{10} \\
{19}&{28}
\end{array}} \right]$
Clearly, LHS $ = $ RHS
Hence, ${\left( {AB} \right)^T} = {B^T}{A^T}$
Thus, verified
Note: A matrix is a rectangular array or table of numbers, symbols or expressions, arranged in rows and columns. Now, in order to multiply two matrices it is really important that the number of columns in the first matrix must be equal to the number of rows in the second matrix. But since, in this question, we had both the matrices of order $2 \times 2$, i.e. square matrices, there was no need to check for this multiplication rule before multiplying them together. Also, when we interchange the rows with columns, we find the transpose of that particular matrix.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

