Answer
Verified
419.1k+ views
Hint: Charges at rest produce only electric fields while charges in motion produce both electric and magnetic fields. Current is flowing through wire means that charge is in motion which produces the magnetic field and we will calculate the magnetic field produced by it at the required point
Formula used:
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
Complete answer:
Electricity and magnetism are interdependent on each other. Motion of the magnet in the conducting loop generates the eddy currents while motion of charge in the conductor produces the magnetic field around it.
In case of current carrying conductor we will consider a small elemental length from the conductor and magnetic field is found out due to that elemental length and we will integrate it throughout the length of the conductor to get the magnetic field at the required point.
Magnetic field intensity due to small elemental length $\mathop {dl}\limits^ \to $ from the conductor in which ‘I’ current is passing and the distance between that point and element is ‘r’ is $\mathop {dB}\limits^ \to $
So that magnetic field is given by the formula
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
If we consider only magnitude of the above vector we will get
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
$\therefore \left| {\mathop {dB}\limits^ \to } \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I\left| {\mathop {dl}\limits^ \to } \right|\sin \theta }}{{\left| r \right|2}}$
The above expression will be maximum when $\sin \theta $ is maximum and maximum value of $\sin \theta $ is one.
$\eqalign{
& \sin \theta = 1 \cr
& \therefore \theta = {90^ \circ } \cr} $
Hence option B is the required answer.
Note:
If we want to find the magnetic field due to long straight current carrying conductor then we will take small elemental length and integrate over total length by following this method. There is another way. We can apply ampere circuital law to find out the magnetic field at a point. Both yield the same result.
Formula used:
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
Complete answer:
Electricity and magnetism are interdependent on each other. Motion of the magnet in the conducting loop generates the eddy currents while motion of charge in the conductor produces the magnetic field around it.
In case of current carrying conductor we will consider a small elemental length from the conductor and magnetic field is found out due to that elemental length and we will integrate it throughout the length of the conductor to get the magnetic field at the required point.
Magnetic field intensity due to small elemental length $\mathop {dl}\limits^ \to $ from the conductor in which ‘I’ current is passing and the distance between that point and element is ‘r’ is $\mathop {dB}\limits^ \to $
So that magnetic field is given by the formula
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
If we consider only magnitude of the above vector we will get
$\mathop {dB}\limits^ \to = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I(\mathop {dl}\limits^ \to \times \mathop r\limits^ \to )}}{{{{\left| r \right|}^3}}}$
$\therefore \left| {\mathop {dB}\limits^ \to } \right| = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{I\left| {\mathop {dl}\limits^ \to } \right|\sin \theta }}{{\left| r \right|2}}$
The above expression will be maximum when $\sin \theta $ is maximum and maximum value of $\sin \theta $ is one.
$\eqalign{
& \sin \theta = 1 \cr
& \therefore \theta = {90^ \circ } \cr} $
Hence option B is the required answer.
Note:
If we want to find the magnetic field due to long straight current carrying conductor then we will take small elemental length and integrate over total length by following this method. There is another way. We can apply ampere circuital law to find out the magnetic field at a point. Both yield the same result.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE