
For the given expression prove that LHS is equal to the RHS. The expression is:
\[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
Answer
609k+ views
Hint: Using the identity \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], and the formula \[{{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\] we can simplify the LHS and make it equal to the RHS.
Complete step-by-step answer:
In the given problem, we have to prove that \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
So now we will start with the LHS.
\[\Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \]
Now, it is know that \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], so we can write above expression as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \\
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
\end{align}\]
Now, let \[si{{n}^{2}}\theta =a\] and \[{{\cos }^{2}}\theta =b\], so we will have LHS as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab(a+b) \\
& \Rightarrow {{(a+b)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because {{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)) \\
\end{align}\]
So substituting back the value of a and b, we have:
\[\begin{align}
& \Rightarrow {{(a+b)}^{3}} \\
& \Rightarrow {{(si{{n}^{2}}\theta +{{\cos }^{2}}\theta )}^{3}} \\
& \Rightarrow {{(1)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1) \\
& \Rightarrow 1 \\
& = RHS \\
\end{align}\]
Hence, we have proved that LHS is equal to RHS in \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\].
Hence proved.
Note: When we use the substitution of the trigonometric ratios, in order to simplify the given trigonometric expression, then it is important to substitute back and get the result in the original trigonometric ratios form. These types of problems can be solved using basic trigonometric and algebraic identities.
Complete step-by-step answer:
In the given problem, we have to prove that \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
So now we will start with the LHS.
\[\Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \]
Now, it is know that \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], so we can write above expression as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \\
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
\end{align}\]
Now, let \[si{{n}^{2}}\theta =a\] and \[{{\cos }^{2}}\theta =b\], so we will have LHS as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab(a+b) \\
& \Rightarrow {{(a+b)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because {{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)) \\
\end{align}\]
So substituting back the value of a and b, we have:
\[\begin{align}
& \Rightarrow {{(a+b)}^{3}} \\
& \Rightarrow {{(si{{n}^{2}}\theta +{{\cos }^{2}}\theta )}^{3}} \\
& \Rightarrow {{(1)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1) \\
& \Rightarrow 1 \\
& = RHS \\
\end{align}\]
Hence, we have proved that LHS is equal to RHS in \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\].
Hence proved.
Note: When we use the substitution of the trigonometric ratios, in order to simplify the given trigonometric expression, then it is important to substitute back and get the result in the original trigonometric ratios form. These types of problems can be solved using basic trigonometric and algebraic identities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

