
For the given expression prove that LHS is equal to the RHS. The expression is:
\[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
Answer
510.6k+ views
Hint: Using the identity \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], and the formula \[{{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)\] we can simplify the LHS and make it equal to the RHS.
Complete step-by-step answer:
In the given problem, we have to prove that \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
So now we will start with the LHS.
\[\Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \]
Now, it is know that \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], so we can write above expression as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \\
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
\end{align}\]
Now, let \[si{{n}^{2}}\theta =a\] and \[{{\cos }^{2}}\theta =b\], so we will have LHS as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab(a+b) \\
& \Rightarrow {{(a+b)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because {{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)) \\
\end{align}\]
So substituting back the value of a and b, we have:
\[\begin{align}
& \Rightarrow {{(a+b)}^{3}} \\
& \Rightarrow {{(si{{n}^{2}}\theta +{{\cos }^{2}}\theta )}^{3}} \\
& \Rightarrow {{(1)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1) \\
& \Rightarrow 1 \\
& = RHS \\
\end{align}\]
Hence, we have proved that LHS is equal to RHS in \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\].
Hence proved.
Note: When we use the substitution of the trigonometric ratios, in order to simplify the given trigonometric expression, then it is important to substitute back and get the result in the original trigonometric ratios form. These types of problems can be solved using basic trigonometric and algebraic identities.
Complete step-by-step answer:
In the given problem, we have to prove that \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\]
So now we will start with the LHS.
\[\Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \]
Now, it is know that \[si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1\], so we can write above expression as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \\
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
\end{align}\]
Now, let \[si{{n}^{2}}\theta =a\] and \[{{\cos }^{2}}\theta =b\], so we will have LHS as:
\[\begin{align}
& \Rightarrow si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta (si{{n}^{2}}\theta +co{{s}^{2}}\theta \;) \\
& \Rightarrow {{a}^{3}}+{{b}^{3}}+3ab(a+b) \\
& \Rightarrow {{(a+b)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because {{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)) \\
\end{align}\]
So substituting back the value of a and b, we have:
\[\begin{align}
& \Rightarrow {{(a+b)}^{3}} \\
& \Rightarrow {{(si{{n}^{2}}\theta +{{\cos }^{2}}\theta )}^{3}} \\
& \Rightarrow {{(1)}^{3}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(\because si{{n}^{2}}\theta +co{{s}^{2}}\theta \;=1) \\
& \Rightarrow 1 \\
& = RHS \\
\end{align}\]
Hence, we have proved that LHS is equal to RHS in \[si{{n}^{6}}\theta +co{{s}^{6}}\theta \;+3\;si{{n}^{2}}\theta \,co{{s}^{2}}\theta \;\;=1\].
Hence proved.
Note: When we use the substitution of the trigonometric ratios, in order to simplify the given trigonometric expression, then it is important to substitute back and get the result in the original trigonometric ratios form. These types of problems can be solved using basic trigonometric and algebraic identities.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
