
For the functions $f\left( x \right)={{x}^{4}}\left( 12\ln x-7 \right)$ match the following:
Column-I Column-II (A) If $\left( a, b \right)$ is the point of inflection then $a-b$ is equal to (p)3 (B) If ${{e}^{t}}$ is a point of minima then $12t$ is equal to (q) 1 (C) If graph is concave downward in $\left( d,e \right)$ then $\left( d+3e \right)$ is equal to (r) 4 (D) If the graph is concave upward in $\left( p,\infty \right)$ then the least value of $p$ is equal to (s) 8
A.$A\to p,B\to r,C\to q,D\to s$ \[\]
B. $A\to q,B\to p,C\to r,D\to s$\[\]
C. $A\to s,B\to r,C\to p,D\to q$\[\]
D. $A\to r,B\to p,C\to q,D\to s$\[\]
Column-I | Column-II |
(A) If $\left( a, b \right)$ is the point of inflection then $a-b$ is equal to | (p)3 |
(B) If ${{e}^{t}}$ is a point of minima then $12t$ is equal to | (q) 1 |
(C) If graph is concave downward in $\left( d,e \right)$ then $\left( d+3e \right)$ is equal to | (r) 4 |
(D) If the graph is concave upward in $\left( p,\infty \right)$ then the least value of $p$ is equal to | (s) 8 |
Answer
486.6k+ views
Hint: We find the critical points at $x=c$ by equating the derivative of $f\left( x \right)={{x}^{4}}\left( 12\ln x-7 \right)$ to zero. We use the first derivative test to check whether there is a minimum at $x=c$. We find the point of inflection $\left( p.f\left( p \right) \right)$ by equation the second derivative of $f\left( x \right)={{x}^{4}}\left( 12\ln x-7 \right)$ to zero. We use the fact that $f\left( x \right)$ is concave downward at $x=a$ if ${{f}^{''}}\left( a \right)<0$ and concave upward if ${{f}^{''}}\left( a \right)>0$. We check what is value of second derivative at both side of $x=p$.
Complete step-by-step solution
We know that maxima or minima of a function occurs at critical points $x=c$ where the first derivative ${{f}^{'}}\left( c \right)=0$ or the first derivative does not exist at $x=c$. We are given the function$f\left( x \right)={{x}^{4}}\left( 12\ln x-7 \right)$. Let us differentiate the function with respect to $x$ using product rule of differentiation .We have;
\[\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}{{x}^{4}}\left( 12\ln x-7 \right) \\
& \Rightarrow {{f}^{'}}\left( x \right)={{x}^{4}}\dfrac{d}{dx}\left( 12\ln x-7 \right)+\left( 12\ln x-7 \right)\dfrac{d}{dx}{{x}^{4}} \\
& \Rightarrow {{f}^{'}}\left( x \right)={{x}^{4}}\dfrac{12}{x}+\left( 12\ln x-7 \right)4{{x}^{3}} \\
& \Rightarrow {{f}^{'}}\left( x \right)=12{{x}^{3}}+48{{x}^{3}}\ln x-28{{x}^{3}} \\
& \Rightarrow {{f}^{'}}\left( x \right)=16{{x}^{3}}\left( 3\ln x-1 \right) \\
\end{align}\]
Now let us equate the first derivative to find the critical point
\[\begin{align}
& {{f}^{'}}\left( x \right)=0 \\
& \Rightarrow 16{{x}^{3}}\left( 3\ln x-1 \right)=0 \\
& \Rightarrow {{x}^{3}}=0\text{ or }\ln x=\dfrac{1}{3} \\
& \Rightarrow x=0\text{ or }x={{e}^{\dfrac{1}{3}}} \\
\end{align}\]
So we have two critical points $x=0$ and$x={{e}^{\dfrac{1}{3}}}$. The function $\log x$ is not defined for $x<0$, so we need to check whether at $x={{e}^{\dfrac{1}{3}}}$ there is maxima or minima occurs for $f\left( x \right)$. We use first order derivative test take points $x=1$ on the left of $x={{e}^{\dfrac{1}{3}}}$ and $x=e$ on the right of $x={{e}^{\dfrac{1}{3}}}$ to check whether the functional value. We have;
\[\begin{align}
& f\left( 1 \right)={{1}^{4}}\left( 12\ln 1-1 \right)=-1<0 \\
& f\left( e \right)={{1}^{4}}\left( 12\ln e-1 \right)=11>0 \\
\end{align}\]
Since the function changes its value from negative to positive at $x={{e}^{\dfrac{1}{3}}}$ there exists a minima at $x={{e}^{\dfrac{1}{3}}}$.
We know that the point of inflection is a point on the graph of the function where the graph changes from concave up to concave down or vice versa. The point of inflection $\left( p,f\left( p \right) \right)$ is obtained from equating ${{f}^{''}}\left( x \right)$ to zero. Let us find ${{f}^{''}}\left( x \right)$ by differentiating ${{f}^{'}}\left( x \right)$ with respect to $x$. We have;
\[\begin{align}
& {{f}^{''}}\left( x \right)=\dfrac{d}{dx}{{f}^{'}}\left( x \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=\dfrac{d}{dx}16{{x}^{3}}\left( 3\ln x-1 \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( {{x}^{3}}\dfrac{d}{dx}\left( 3\ln x-1 \right)+\left( 3\ln x-1 \right)\dfrac{d}{dx}{{x}^{3}} \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( {{x}^{3}}\times \dfrac{3}{x}+\left( 3\ln x-1 \right)\times 3{{x}^{2}} \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( 3{{x}^{2}}+9{{x}^{2}}\ln x-3{{x}^{2}} \right)=144{{x}^{2}}\ln x \\
& \\
\end{align}\]
Let us equate ${{f}^{''}}\left( x \right)$ to zero and find the point of inflection.
\[\begin{align}
& {{f}^{''}}\left( x \right)=0 \\
& \Rightarrow 144{{x}^{2}}\ln x=0 \\
& \Rightarrow {{x}^{2}}=0\text{ or }\ln x=0 \\
& \Rightarrow x=0\text{ or }x=1 \\
\end{align}\]
Since we have already rejected the point of inflection is
\[\left( 1,f\left( 1 \right) \right)=\left( 1,{{1}^{4}}\left( 12\ln 1-7 \right) \right)=\left( 1,1\left( -7 \right) \right)=\left( 1,-7 \right)\]
We know that a graph at $x=a$ is concave downward if ${{f}^{''}}\left( a \right)<0$ and concave upward if${{f}^{''}}\left( a \right)>0$. Since we have $\ln x<0$ when $x\in \left( 0,1 \right)$ then ${{f}^{''}}\left( a \right)=144{{a}^{2}}\ln a<0$ for all $x=a$ in the interval $x\in \left( 0,1 \right)$ . We also have $\ln x > 0$ for all $x\in \left( 1,\infty \right)$ then ${{f}^{''}}\left( a \right)=144{{a}^{2}}\ln a > 0$ for all $x=a$ in the interval$x\in \left( 1,\infty \right)$. So the graph of $f\left( x \right)$ is concave downward in $\left( 0,1 \right)$ and concave upward in $\left( 1,\infty \right)$.\[\]
Now let us check the columns. \[\]
(A) Since the point of inflection is $\left( 1,-7 \right)$, we have $\left( a,b \right)=\left( 1,-7 \right)$ and $a-b=1-\left( -7 \right)=8$. So we have $A\to s$\[\]
(B) Since $x={{e}^{\dfrac{1}{3}}}$ is point of minima we have ${{e}^{t}}={{e}^{\dfrac{1}{3}}}\Rightarrow t=\dfrac{1}{3}\Rightarrow 12t=12\times \dfrac{1}{3}=4$. So we have $B\to r$.\[\]
(C)Since the graph of $f\left( x \right)$ is concave downward in $\left( 0,1 \right)$ we have$\left( d,e \right)=\left( 0,1 \right)\Rightarrow d+3e=0+3\times 1=3$. So we have $C\to p$\[\]
(D)Since the graph of $f\left( x \right)$ is concave upward in $\left( 1,\infty \right)$; we have $\left( 1,\infty \right)=\left( p,\infty \right)\Rightarrow p=1$. So we have $D\to q$. \[\]
Hence the correct choice is C. $A\to s,B\to r,C\to p,D\to q$
Note: We note that we can also find the minima using second derivative test that is ${{f}^{'}}\left( c \right)=0$ and ${{f}^{''}}\left( c \right) > 0$ then there is a minima at $x=c$. We choose the points $x=1,e$ for testing minima with first order because $e>1\Rightarrow {{e}^{\dfrac{1}{3}}}>0$. The function changes its sign at critical points and the second order derivative changes its sign at the point of inflection.
Complete step-by-step solution
We know that maxima or minima of a function occurs at critical points $x=c$ where the first derivative ${{f}^{'}}\left( c \right)=0$ or the first derivative does not exist at $x=c$. We are given the function$f\left( x \right)={{x}^{4}}\left( 12\ln x-7 \right)$. Let us differentiate the function with respect to $x$ using product rule of differentiation .We have;
\[\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{d}{dx}{{x}^{4}}\left( 12\ln x-7 \right) \\
& \Rightarrow {{f}^{'}}\left( x \right)={{x}^{4}}\dfrac{d}{dx}\left( 12\ln x-7 \right)+\left( 12\ln x-7 \right)\dfrac{d}{dx}{{x}^{4}} \\
& \Rightarrow {{f}^{'}}\left( x \right)={{x}^{4}}\dfrac{12}{x}+\left( 12\ln x-7 \right)4{{x}^{3}} \\
& \Rightarrow {{f}^{'}}\left( x \right)=12{{x}^{3}}+48{{x}^{3}}\ln x-28{{x}^{3}} \\
& \Rightarrow {{f}^{'}}\left( x \right)=16{{x}^{3}}\left( 3\ln x-1 \right) \\
\end{align}\]
Now let us equate the first derivative to find the critical point
\[\begin{align}
& {{f}^{'}}\left( x \right)=0 \\
& \Rightarrow 16{{x}^{3}}\left( 3\ln x-1 \right)=0 \\
& \Rightarrow {{x}^{3}}=0\text{ or }\ln x=\dfrac{1}{3} \\
& \Rightarrow x=0\text{ or }x={{e}^{\dfrac{1}{3}}} \\
\end{align}\]
So we have two critical points $x=0$ and$x={{e}^{\dfrac{1}{3}}}$. The function $\log x$ is not defined for $x<0$, so we need to check whether at $x={{e}^{\dfrac{1}{3}}}$ there is maxima or minima occurs for $f\left( x \right)$. We use first order derivative test take points $x=1$ on the left of $x={{e}^{\dfrac{1}{3}}}$ and $x=e$ on the right of $x={{e}^{\dfrac{1}{3}}}$ to check whether the functional value. We have;
\[\begin{align}
& f\left( 1 \right)={{1}^{4}}\left( 12\ln 1-1 \right)=-1<0 \\
& f\left( e \right)={{1}^{4}}\left( 12\ln e-1 \right)=11>0 \\
\end{align}\]
Since the function changes its value from negative to positive at $x={{e}^{\dfrac{1}{3}}}$ there exists a minima at $x={{e}^{\dfrac{1}{3}}}$.
We know that the point of inflection is a point on the graph of the function where the graph changes from concave up to concave down or vice versa. The point of inflection $\left( p,f\left( p \right) \right)$ is obtained from equating ${{f}^{''}}\left( x \right)$ to zero. Let us find ${{f}^{''}}\left( x \right)$ by differentiating ${{f}^{'}}\left( x \right)$ with respect to $x$. We have;
\[\begin{align}
& {{f}^{''}}\left( x \right)=\dfrac{d}{dx}{{f}^{'}}\left( x \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=\dfrac{d}{dx}16{{x}^{3}}\left( 3\ln x-1 \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( {{x}^{3}}\dfrac{d}{dx}\left( 3\ln x-1 \right)+\left( 3\ln x-1 \right)\dfrac{d}{dx}{{x}^{3}} \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( {{x}^{3}}\times \dfrac{3}{x}+\left( 3\ln x-1 \right)\times 3{{x}^{2}} \right) \\
& \Rightarrow {{f}^{''}}\left( x \right)=16\left( 3{{x}^{2}}+9{{x}^{2}}\ln x-3{{x}^{2}} \right)=144{{x}^{2}}\ln x \\
& \\
\end{align}\]
Let us equate ${{f}^{''}}\left( x \right)$ to zero and find the point of inflection.
\[\begin{align}
& {{f}^{''}}\left( x \right)=0 \\
& \Rightarrow 144{{x}^{2}}\ln x=0 \\
& \Rightarrow {{x}^{2}}=0\text{ or }\ln x=0 \\
& \Rightarrow x=0\text{ or }x=1 \\
\end{align}\]
Since we have already rejected the point of inflection is
\[\left( 1,f\left( 1 \right) \right)=\left( 1,{{1}^{4}}\left( 12\ln 1-7 \right) \right)=\left( 1,1\left( -7 \right) \right)=\left( 1,-7 \right)\]
We know that a graph at $x=a$ is concave downward if ${{f}^{''}}\left( a \right)<0$ and concave upward if${{f}^{''}}\left( a \right)>0$. Since we have $\ln x<0$ when $x\in \left( 0,1 \right)$ then ${{f}^{''}}\left( a \right)=144{{a}^{2}}\ln a<0$ for all $x=a$ in the interval $x\in \left( 0,1 \right)$ . We also have $\ln x > 0$ for all $x\in \left( 1,\infty \right)$ then ${{f}^{''}}\left( a \right)=144{{a}^{2}}\ln a > 0$ for all $x=a$ in the interval$x\in \left( 1,\infty \right)$. So the graph of $f\left( x \right)$ is concave downward in $\left( 0,1 \right)$ and concave upward in $\left( 1,\infty \right)$.\[\]
Now let us check the columns. \[\]
(A) Since the point of inflection is $\left( 1,-7 \right)$, we have $\left( a,b \right)=\left( 1,-7 \right)$ and $a-b=1-\left( -7 \right)=8$. So we have $A\to s$\[\]
(B) Since $x={{e}^{\dfrac{1}{3}}}$ is point of minima we have ${{e}^{t}}={{e}^{\dfrac{1}{3}}}\Rightarrow t=\dfrac{1}{3}\Rightarrow 12t=12\times \dfrac{1}{3}=4$. So we have $B\to r$.\[\]
(C)Since the graph of $f\left( x \right)$ is concave downward in $\left( 0,1 \right)$ we have$\left( d,e \right)=\left( 0,1 \right)\Rightarrow d+3e=0+3\times 1=3$. So we have $C\to p$\[\]
(D)Since the graph of $f\left( x \right)$ is concave upward in $\left( 1,\infty \right)$; we have $\left( 1,\infty \right)=\left( p,\infty \right)\Rightarrow p=1$. So we have $D\to q$. \[\]
Hence the correct choice is C. $A\to s,B\to r,C\to p,D\to q$
Note: We note that we can also find the minima using second derivative test that is ${{f}^{'}}\left( c \right)=0$ and ${{f}^{''}}\left( c \right) > 0$ then there is a minima at $x=c$. We choose the points $x=1,e$ for testing minima with first order because $e>1\Rightarrow {{e}^{\dfrac{1}{3}}}>0$. The function changes its sign at critical points and the second order derivative changes its sign at the point of inflection.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
