
For the following reaction: ${{K}_{P}}=1.7\times {{10}^{7}}$ at 25$^{o}C$
\[A{{g}^{+}}(aq)+2N{{H}_{3}}(g)\rightleftarrows {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}\]
What value of $\Delta {{G}^{o}}$ in kJ?
(A) -41.2
(B) -17.9
(C) +17.9
(D) +41.2
Answer
510.9k+ views
Hint: Relation between Gibbs free energy ($\Delta {{G}^{o}}$) of a reaction and equilibrium constant (${{K}_{p}}$) is given as $\Delta {{G}^{o}}=-RT\ln ({{K}_{p}})$.
Since ${{\ln }_{e}}=2.303{{\log }_{10}}$, expression for $\Delta {{G}^{o}}$ is also written as $\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}})$.
Value of universal gas constant, R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$
Complete step by step answer:
The given chemical reaction is
\[A{{g}^{+}}(aq)+2N{{H}_{3}}(g)\rightleftarrows {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}\]
We have been given the equilibrium constant of the reaction in terms of pressure, ${{K}_{P}}=1.7\times {{10}^{7}}$
Given, temperature of the reaction, T = 25$^{o}C$.
To convert temperature in Celsius ($^{o}C$) to Kelvin (K),
T (K) = T ($^{o}C$ ) + 273.15
T (K) = 25 + 273.15 = 298.15 K
We know that Gibbs free energy of a reaction is given as, $\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}})$
Substituting R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$, T = 298.15 K and ${{K}_{P}}=1.7\times {{10}^{7}}$ in the above expression, we get
$\begin{align}
& \Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}}) \\
& \Delta {{G}^{o}}=-2.303\times 8.314J{{K}^{1}}mo{{l}^{-1}}\times 298.15K\times \log (1.7\times {{10}^{7}}) \\
& \Delta {{G}^{o}}=-5708.72\times \log (1.7\times {{10}^{7}}) \\
\end{align}$
Applying $\log (mn)=\log m + \log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+\log {{10}^{7}}) \\
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+7\log 10) \\
\end{align}\]
On substituting ${{\log }_{10}}10=1$and log (1.7) = 0.23045, the above equation becomes
\[\begin{align}
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (0.23045+7\times 1) \\
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times 7.23045 \\
& \Delta {{G}^{o}}=-41276.60Jmo{{l}^{-1}} \\
\end{align}\]
To convert the free energy in kilojoules, divide it by ${{10}^{3}}$.
Since 1 kJ = 1000 J or 1 J = $\dfrac{1}{1000}$ kJ.
Thus, we have -41276.60 J = $\dfrac{-41276.60}{1000}$ kJ = -41.27660 kJ.
Therefore, the $\Delta {{G}^{o}}$ of the given reaction = $41.27660kJmo{{l}^{-1}}$.
So, the correct answer is “Option A”.
Note: Note that when ${{K}_{p}}>1$, then $\Delta {{G}^{o}}<0$. Negative value of Gibbs free energy means that the reaction is spontaneous and proceeds in the forward direction. Carefully solve the question to avoid calculation errors.
Since ${{\ln }_{e}}=2.303{{\log }_{10}}$, expression for $\Delta {{G}^{o}}$ is also written as $\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}})$.
Value of universal gas constant, R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$
Complete step by step answer:
The given chemical reaction is
\[A{{g}^{+}}(aq)+2N{{H}_{3}}(g)\rightleftarrows {{\left[ Ag{{(N{{H}_{3}})}_{2}} \right]}^{+}}\]
We have been given the equilibrium constant of the reaction in terms of pressure, ${{K}_{P}}=1.7\times {{10}^{7}}$
Given, temperature of the reaction, T = 25$^{o}C$.
To convert temperature in Celsius ($^{o}C$) to Kelvin (K),
T (K) = T ($^{o}C$ ) + 273.15
T (K) = 25 + 273.15 = 298.15 K
We know that Gibbs free energy of a reaction is given as, $\Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}})$
Substituting R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$, T = 298.15 K and ${{K}_{P}}=1.7\times {{10}^{7}}$ in the above expression, we get
$\begin{align}
& \Delta {{G}^{o}}=-2.303RT\log ({{K}_{p}}) \\
& \Delta {{G}^{o}}=-2.303\times 8.314J{{K}^{1}}mo{{l}^{-1}}\times 298.15K\times \log (1.7\times {{10}^{7}}) \\
& \Delta {{G}^{o}}=-5708.72\times \log (1.7\times {{10}^{7}}) \\
\end{align}$
Applying $\log (mn)=\log m + \log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+\log {{10}^{7}}) \\
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (\log 1.7+7\log 10) \\
\end{align}\]
On substituting ${{\log }_{10}}10=1$and log (1.7) = 0.23045, the above equation becomes
\[\begin{align}
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times (0.23045+7\times 1) \\
& \Delta {{G}^{o}}=-5708.72Jmo{{l}^{-1}}\times 7.23045 \\
& \Delta {{G}^{o}}=-41276.60Jmo{{l}^{-1}} \\
\end{align}\]
To convert the free energy in kilojoules, divide it by ${{10}^{3}}$.
Since 1 kJ = 1000 J or 1 J = $\dfrac{1}{1000}$ kJ.
Thus, we have -41276.60 J = $\dfrac{-41276.60}{1000}$ kJ = -41.27660 kJ.
Therefore, the $\Delta {{G}^{o}}$ of the given reaction = $41.27660kJmo{{l}^{-1}}$.
So, the correct answer is “Option A”.
Note: Note that when ${{K}_{p}}>1$, then $\Delta {{G}^{o}}<0$. Negative value of Gibbs free energy means that the reaction is spontaneous and proceeds in the forward direction. Carefully solve the question to avoid calculation errors.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the technique used to separate the components class 11 chemistry CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
