Answer
Verified
446.4k+ views
Hint: We are given with the values of pressure, at the different time. We will calculate the total pressure at time t. The reaction is given in which there is decomposition of ethyl chloride into ethylene and hydrochloric acid. So, the rate constant can be calculated for first order reaction.
Complete step by step answer:
Now, we are given with the thermal decomposition reaction of ethyl chloride; the reaction is
C$_2$H$_5$Cl$_g$ $\xrightarrow{h\nu}$ C$_2$H$_4$$_{(g)}$ + HCl $_{(g)}$
From the table, we can say that the value of initial pressure is 0.30 atm at the time 0 sec, and the value of final pressure is 0.50 atm at the time 300 sec.
As we know, the value of rate constant is represented by k in terms of pressure; i.e.
k = $\dfrac{2.303}{t}$log$\dfrac{P_0}{P_0 - P}$
C$_2$H$_5$Cl$_g$ $\xrightarrow{h\nu}$ C$_2$H$_4$$_{(g)}$ + HCl $_{(g)}$
Now, from the above table we can calculate the total pressure at time t, i.e.
Total pressure, P$_t$ = (P$_0$ - p) + p + p
We have, P$_t$ = P$_0$ + p
We can calculate the value p, i.e. p = P$_t$ - P$_0$
Thus, value of pressure at time t for ethyl chloride;
P$_0$ - p = P$_0$ - P$_t$ + P$_0$
P$_0$ - p = 2 P$_0$ - P$_t$
Thus, now we will calculate the value of k for first order reaction,
k = $\dfrac{2.303}{t}$log$\dfrac{P_0}{2P_0 – P_t}$
Here, we have t = 300 sec, final pressure (P$_t$) = 0.5atm, and initial pressure (P$_0$) = 0.3atm.
If we substitute these value in the rate constant formula, then
k = $\dfrac{2.303}{300}$log$\dfrac{0.3}{2(0.3) – 0.5}$ ,
k = 3.6 $\times$ 10$^{-3}$ sec$^{-1}$
Therefore, in the end we can say that the value of k (rate constant) is 3.6 $\times$ 10$^{-3}$ sec$^{-1}$.
Note: Don’t get confused while finding the value of rate constant. Just draw the table to differentiate between the different values for decomposed molecules. With the help of a table; we are able to calculate the values of pressure, without any confusion.
Complete step by step answer:
Now, we are given with the thermal decomposition reaction of ethyl chloride; the reaction is
C$_2$H$_5$Cl$_g$ $\xrightarrow{h\nu}$ C$_2$H$_4$$_{(g)}$ + HCl $_{(g)}$
From the table, we can say that the value of initial pressure is 0.30 atm at the time 0 sec, and the value of final pressure is 0.50 atm at the time 300 sec.
As we know, the value of rate constant is represented by k in terms of pressure; i.e.
k = $\dfrac{2.303}{t}$log$\dfrac{P_0}{P_0 - P}$
C$_2$H$_5$Cl$_g$ $\xrightarrow{h\nu}$ C$_2$H$_4$$_{(g)}$ + HCl $_{(g)}$
At time t = 0 | P$_0$ | 0 | 0 |
At time t= t | P$_0$ - p | p | p |
Now, from the above table we can calculate the total pressure at time t, i.e.
Total pressure, P$_t$ = (P$_0$ - p) + p + p
We have, P$_t$ = P$_0$ + p
We can calculate the value p, i.e. p = P$_t$ - P$_0$
Thus, value of pressure at time t for ethyl chloride;
P$_0$ - p = P$_0$ - P$_t$ + P$_0$
P$_0$ - p = 2 P$_0$ - P$_t$
Thus, now we will calculate the value of k for first order reaction,
k = $\dfrac{2.303}{t}$log$\dfrac{P_0}{2P_0 – P_t}$
Here, we have t = 300 sec, final pressure (P$_t$) = 0.5atm, and initial pressure (P$_0$) = 0.3atm.
If we substitute these value in the rate constant formula, then
k = $\dfrac{2.303}{300}$log$\dfrac{0.3}{2(0.3) – 0.5}$ ,
k = 3.6 $\times$ 10$^{-3}$ sec$^{-1}$
Therefore, in the end we can say that the value of k (rate constant) is 3.6 $\times$ 10$^{-3}$ sec$^{-1}$.
Note: Don’t get confused while finding the value of rate constant. Just draw the table to differentiate between the different values for decomposed molecules. With the help of a table; we are able to calculate the values of pressure, without any confusion.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE