
For the decomposition of azo-isopropane to hexane and nitrogen at 543K, the following data are obtained.
Time in seconds Pressure in ${\text{mm}}$ of ${\text{Hg}}$ $0$ $35.0$ $360$ $54.0$ $720$ $63.0$
Calculate the rate constant.
| Time in seconds | Pressure in ${\text{mm}}$ of ${\text{Hg}}$ |
| $0$ | $35.0$ |
| $360$ | $54.0$ |
| $720$ | $63.0$ |
Answer
576.9k+ views
Hint: Rate constant is a proportionality constant that appears in a rate law. It is independent of the concentrations but depends on other factors, most notably temperature. Order of a reaction is the sum of powers of concentration terms in the rate equation. In first order reaction, reaction rate is determined by one concentration term.
Complete step by step answer:
The decomposition reaction of azo-isopropane to hexane is given below:
${\left( {{\text{C}}{{\text{H}}_3}} \right)_2}{\text{CHN = NCH}}{\left( {{\text{C}}{{\text{H}}_3}} \right)_2} \to {{\text{C}}_6}{{\text{H}}_{14}} + {{\text{N}}_2}$
Let the initial pressure of azo-isopropane, ${{\text{P}}_{{\text{azo}}}}$ be ${{\text{P}}_{\text{i}}}$, pressure of ${{\text{N}}_2}$ be ${{\text{P}}_{{{\text{N}}_2}}}$, pressure of hexane be${{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}}$.
Now at time, ${\text{t}} = 0$,
${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}},{{\text{P}}_{{{\text{N}}_2}}} = 0,{{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}} = 0$ since there is no decomposition occurs at time, ${\text{t}} = 0$.
But at time ${\text{t}}$,
${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}} - {\text{p}},{{\text{P}}_{{{\text{N}}_2}}} = {\text{p}},{{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}} = {\text{p}}$
We know that the total pressure will be the sum of the pressures at time ${\text{t}}$.
i.e. Total pressure, ${{\text{P}}_{\text{t}}} = \left( {{{\text{P}}_{\text{i}}} - {\text{p}}} \right) + {\text{p}} + {\text{p}}$
${{\text{P}}_{\text{t}}}{\text{ = }}{{\text{P}}_{\text{i}}} + {\text{p}} \Leftrightarrow {\text{p = }}{{\text{P}}_{\text{t}}} - {{\text{P}}_{\text{i}}}$
Thus we can write ${{\text{P}}_{{\text{azo}}}}$ as ${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}} - \left( {{{\text{P}}_{\text{t}}} - {{\text{P}}_{\text{i}}}} \right) = 2{{\text{P}}_{\text{i}}} - {{\text{P}}_{\text{t}}}$
Here, the rate is expressed with respect to pressure.
We know that for first order reaction, rate constant, ${\text{k}} = \dfrac{{2.303}}{{\text{t}}}\log \dfrac{{{{\left[ {\text{A}} \right]}_0}}}{{{{\left[ {\text{A}} \right]}_{\text{t}}}}}$, where ${\left[ {\text{A}} \right]_0}$ is the initial value(here, it is initial pressure) and ${\left[ {\text{A}} \right]_{\text{t}}}$ is the final value (here, it is final pressure).
Substituting the values, we get
${\text{k}} = \dfrac{{2.303}}{{\text{t}}}\log \dfrac{{{{\text{P}}_{\text{i}}}}}{{2{{\text{P}}_{\text{i}}} - {{\text{P}}_{\text{t}}}}}$
When time, ${\text{t}} = 360{\text{s}}$, ${{\text{P}}_{\text{i}}} = 35.0{\text{mm}}$, ${{\text{P}}_{\text{t}}} = 54.0$
${\text{k}} = \dfrac{{2.303}}{{360{\text{s}}}}\log \dfrac{{35.0}}{{2 \times 35.0 - 54.0}}$
$ {\text{k}} = 6.39 \times {10^{ - 3}}\log 2.18 \\
{\text{k}} = 6.39 \times {10^{ - 3}} \times 0.34 \\
{\text{k}} = 2.17 \times {10^{ - 3}}{{\text{s}}^{ - 1}} \\ $
When time, ${\text{t}} = 720{\text{s}}$, ${{\text{P}}_{\text{i}}} = 35.0{\text{mm}}$, ${{\text{P}}_{\text{t}}} = 63.0$
${\text{k}} = \dfrac{{2.303}}{{720{\text{s}}}}\log \dfrac{{35.0}}{{2 \times 35.0 - 63.0}}$
On simplification, we get
$ {\text{k}} = 3.19 \times {10^{ - 3}}\log \dfrac{{35.0}}{7} \\
{\text{k}} = 3.19 \times {10^{ - 3}}\log 5 \\
{\text{k}} = 3.19 \times {10^{ - 3}} \times 0.69 \\$
By solving, we get
${\text{k}} = 2.23 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$
Thus we get both the rate constants almost equal.
Now we can calculate the average rate constant.
i.e. ${{\text{k}}_{{\text{avg}}}} = \dfrac{{2.17 \times {{10}^{ - 3}}{{\text{s}}^{ - 1}} + 2.23 \times {{10}^{ - 3}}{{\text{s}}^{ - 1}}}}{2} = 2.20 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$
Thus, the rate constant is $2.20 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$.
Note: In first order reaction, the rate of reaction is proportional to the concentration of reacting substance. The unit of first order reaction is inverse of time. Half-life can also be determined from the value of rate constant. It is the time required for half of the compound to decompose. It is inversely proportional to the rate constant.
Complete step by step answer:
The decomposition reaction of azo-isopropane to hexane is given below:
${\left( {{\text{C}}{{\text{H}}_3}} \right)_2}{\text{CHN = NCH}}{\left( {{\text{C}}{{\text{H}}_3}} \right)_2} \to {{\text{C}}_6}{{\text{H}}_{14}} + {{\text{N}}_2}$
Let the initial pressure of azo-isopropane, ${{\text{P}}_{{\text{azo}}}}$ be ${{\text{P}}_{\text{i}}}$, pressure of ${{\text{N}}_2}$ be ${{\text{P}}_{{{\text{N}}_2}}}$, pressure of hexane be${{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}}$.
Now at time, ${\text{t}} = 0$,
${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}},{{\text{P}}_{{{\text{N}}_2}}} = 0,{{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}} = 0$ since there is no decomposition occurs at time, ${\text{t}} = 0$.
But at time ${\text{t}}$,
${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}} - {\text{p}},{{\text{P}}_{{{\text{N}}_2}}} = {\text{p}},{{\text{P}}_{{{\text{C}}_6}{{\text{H}}_{14}}}} = {\text{p}}$
We know that the total pressure will be the sum of the pressures at time ${\text{t}}$.
i.e. Total pressure, ${{\text{P}}_{\text{t}}} = \left( {{{\text{P}}_{\text{i}}} - {\text{p}}} \right) + {\text{p}} + {\text{p}}$
${{\text{P}}_{\text{t}}}{\text{ = }}{{\text{P}}_{\text{i}}} + {\text{p}} \Leftrightarrow {\text{p = }}{{\text{P}}_{\text{t}}} - {{\text{P}}_{\text{i}}}$
Thus we can write ${{\text{P}}_{{\text{azo}}}}$ as ${{\text{P}}_{{\text{azo}}}} = {{\text{P}}_{\text{i}}} - \left( {{{\text{P}}_{\text{t}}} - {{\text{P}}_{\text{i}}}} \right) = 2{{\text{P}}_{\text{i}}} - {{\text{P}}_{\text{t}}}$
Here, the rate is expressed with respect to pressure.
We know that for first order reaction, rate constant, ${\text{k}} = \dfrac{{2.303}}{{\text{t}}}\log \dfrac{{{{\left[ {\text{A}} \right]}_0}}}{{{{\left[ {\text{A}} \right]}_{\text{t}}}}}$, where ${\left[ {\text{A}} \right]_0}$ is the initial value(here, it is initial pressure) and ${\left[ {\text{A}} \right]_{\text{t}}}$ is the final value (here, it is final pressure).
Substituting the values, we get
${\text{k}} = \dfrac{{2.303}}{{\text{t}}}\log \dfrac{{{{\text{P}}_{\text{i}}}}}{{2{{\text{P}}_{\text{i}}} - {{\text{P}}_{\text{t}}}}}$
When time, ${\text{t}} = 360{\text{s}}$, ${{\text{P}}_{\text{i}}} = 35.0{\text{mm}}$, ${{\text{P}}_{\text{t}}} = 54.0$
${\text{k}} = \dfrac{{2.303}}{{360{\text{s}}}}\log \dfrac{{35.0}}{{2 \times 35.0 - 54.0}}$
$ {\text{k}} = 6.39 \times {10^{ - 3}}\log 2.18 \\
{\text{k}} = 6.39 \times {10^{ - 3}} \times 0.34 \\
{\text{k}} = 2.17 \times {10^{ - 3}}{{\text{s}}^{ - 1}} \\ $
When time, ${\text{t}} = 720{\text{s}}$, ${{\text{P}}_{\text{i}}} = 35.0{\text{mm}}$, ${{\text{P}}_{\text{t}}} = 63.0$
${\text{k}} = \dfrac{{2.303}}{{720{\text{s}}}}\log \dfrac{{35.0}}{{2 \times 35.0 - 63.0}}$
On simplification, we get
$ {\text{k}} = 3.19 \times {10^{ - 3}}\log \dfrac{{35.0}}{7} \\
{\text{k}} = 3.19 \times {10^{ - 3}}\log 5 \\
{\text{k}} = 3.19 \times {10^{ - 3}} \times 0.69 \\$
By solving, we get
${\text{k}} = 2.23 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$
Thus we get both the rate constants almost equal.
Now we can calculate the average rate constant.
i.e. ${{\text{k}}_{{\text{avg}}}} = \dfrac{{2.17 \times {{10}^{ - 3}}{{\text{s}}^{ - 1}} + 2.23 \times {{10}^{ - 3}}{{\text{s}}^{ - 1}}}}{2} = 2.20 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$
Thus, the rate constant is $2.20 \times {10^{ - 3}}{{\text{s}}^{ - 1}}$.
Note: In first order reaction, the rate of reaction is proportional to the concentration of reacting substance. The unit of first order reaction is inverse of time. Half-life can also be determined from the value of rate constant. It is the time required for half of the compound to decompose. It is inversely proportional to the rate constant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

