
For the decomposition of 1 mol of $\text{N}{{\text{H}}_{\text{3}}}\left( \text{g} \right)$ into ${{\text{N}}_{2}}\left( \text{g} \right)$ and ${{\text{H}}_{2}}\left( \text{g} \right)$, $\text{K=2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$. If the equilibrium concentration of ${{\text{N}}_{2}}\left( \text{g} \right)$ is $\text{0}\text{.09M}$ and ${{\text{H}}_{2}}\left( \text{g} \right)$ is $\text{0}\text{.04M}$, then the equilibrium concentration of $\text{N}{{\text{H}}_{\text{3}}}\left( \text{g} \right)$ is:
(A)- $\text{1}\text{.2M}$
(B)- $\text{2}\text{.88 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$
(C)- $\text{5}\text{.36 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-2}}}\text{M}$
(D)- None of these
Answer
538.8k+ views
Hint: Equilibrium constant of any reaction is defined as the ratio of the equilibrium concentration of the formed products in the chemical reaction to the equilibrium concentration of reactants present in the chemical reaction.
Complete step by step solution:
First we write balanced chemical equation for the given reaction:
\[\text{2N}{{\text{H}}_{\text{3}}}\to {{\text{N}}_{\text{2}}}\text{+3}{{\text{H}}_{\text{2}}}\]
Given that, Equilibrium concentration of nitrogen gas i.e. ${{\text{N}}_{2}}\left( \text{g} \right)$ = $\text{0}\text{.09M}$,
Equilibrium concentration of hydrogen gas i.e. ${{\text{H}}_{2}}\left( \text{g} \right)$ = $\text{0}\text{.04M}$,
Equilibrium constant of given reaction $\text{K=2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$.
We know that equilibrium constant for given reaction will be calculated as follow:
\[\text{K=}\dfrac{\left[ {{\text{N}}_{\text{2}}} \right]{{\left[ {{\text{H}}_{\text{2}}} \right]}^{\text{3}}}}{{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}}\]
On putting the values of equilibrium concentration of nitrogen gas, hydrogen gas & equilibrium constant in the above equation we get,
\[\text{2}\times \text{1}{{\text{0}}^{-3}}\text{=}\dfrac{\left[ 0.09 \right]{{\left[ 0.04 \right]}^{\text{3}}}}{{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}}\]
\[{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}=\dfrac{\left[ 0.09 \right]{{\left[ 0.04 \right]}^{\text{3}}}}{\text{2}\times \text{1}{{\text{0}}^{-3}}}\]
\[{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}=2.8\times {{10}^{-3}}\]
\[\left[ \text{N}{{\text{H}}_{\text{3}}} \right]=\sqrt{2.8\times {{10}^{-3}}}=1.6\times {{10}^{-3}}\]
From the above discussion it is clear that the equilibrium concentration of $\text{N}{{\text{H}}_{\text{3}}}\left( \text{g} \right)$ is $\text{1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$.
Hence, the option (D) is correct because none of the above-given options matches the answer.
Additional information: Equilibrium constant of any chemical reaction defines the amount of prepared product & reactant in the equilibrium condition of a reversible reaction, where the rate of forwarding reaction is equal to the rate of backward reaction.
Note: Always keep in mind that during the calculation of equilibrium constant of any reaction first, you have to balance the given chemical reaction, because if you do not do so then you will get the wrong answer.
Complete step by step solution:
First we write balanced chemical equation for the given reaction:
\[\text{2N}{{\text{H}}_{\text{3}}}\to {{\text{N}}_{\text{2}}}\text{+3}{{\text{H}}_{\text{2}}}\]
Given that, Equilibrium concentration of nitrogen gas i.e. ${{\text{N}}_{2}}\left( \text{g} \right)$ = $\text{0}\text{.09M}$,
Equilibrium concentration of hydrogen gas i.e. ${{\text{H}}_{2}}\left( \text{g} \right)$ = $\text{0}\text{.04M}$,
Equilibrium constant of given reaction $\text{K=2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$.
We know that equilibrium constant for given reaction will be calculated as follow:
\[\text{K=}\dfrac{\left[ {{\text{N}}_{\text{2}}} \right]{{\left[ {{\text{H}}_{\text{2}}} \right]}^{\text{3}}}}{{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}}\]
On putting the values of equilibrium concentration of nitrogen gas, hydrogen gas & equilibrium constant in the above equation we get,
\[\text{2}\times \text{1}{{\text{0}}^{-3}}\text{=}\dfrac{\left[ 0.09 \right]{{\left[ 0.04 \right]}^{\text{3}}}}{{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}}\]
\[{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}=\dfrac{\left[ 0.09 \right]{{\left[ 0.04 \right]}^{\text{3}}}}{\text{2}\times \text{1}{{\text{0}}^{-3}}}\]
\[{{\left[ \text{N}{{\text{H}}_{\text{3}}} \right]}^{\text{2}}}=2.8\times {{10}^{-3}}\]
\[\left[ \text{N}{{\text{H}}_{\text{3}}} \right]=\sqrt{2.8\times {{10}^{-3}}}=1.6\times {{10}^{-3}}\]
From the above discussion it is clear that the equilibrium concentration of $\text{N}{{\text{H}}_{\text{3}}}\left( \text{g} \right)$ is $\text{1}\text{.6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-3}}}\text{M}$.
Hence, the option (D) is correct because none of the above-given options matches the answer.
Additional information: Equilibrium constant of any chemical reaction defines the amount of prepared product & reactant in the equilibrium condition of a reversible reaction, where the rate of forwarding reaction is equal to the rate of backward reaction.
Note: Always keep in mind that during the calculation of equilibrium constant of any reaction first, you have to balance the given chemical reaction, because if you do not do so then you will get the wrong answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

