
For silver, \[{\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}}
\right){\text{ = 23 + 0}}{\text{.01T}}\] . If the temperature (T) of \[{\text{3 moles}}\] of silver is raised from \[300{\text{ K}}\] to \[1000{\text{ K}}\] at \[1{\text{ atm}}\] pressure, the value of \[\Delta H\] will be close to:
A \[21{\text{ kJ}}\]
B \[16{\text{ kJ}}\]
C \[13{\text{ kJ}}\]
D \[62{\text{ kJ}}\]
Answer
557.4k+ views
Hint: We can begin by writing an expression to obtain \[\Delta H\] from the heat capacity
\[\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT} \]
Then, you should substitute values in the above expression:
In the next step, you integrate the above expression within the limits of the given temperature range, and further solve the expression to obtain \[\Delta H\]value.
Complete Step by step answer: The enthalpy change and the heat capacity are mathematically related to each other.
Write an expression to obtain \[\Delta H\] from the heat capacity
\[\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT} \]
Substitute the number of moles as 3, the initial and final temperatures as 300 and 1000 and the heat capacity of silver \[{\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)\] as \[{\text{ 23 + 0}}{\text{.01T}}\] in the above expression:
\[\Delta H = 3 \times \int\limits_{300}^{1000} {\left( {{\text{23 + 0}}{\text{.01T}}} \right)dT} \]
Integrate the above expression
\[
\Rightarrow \Delta H = 3 \times \left[ {23\left( {\text{T}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}} + \dfrac{{0.01}}{2}\left( {{{\text{T}}^2}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}}} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {23\left( {{{\text{T}}_2}{\text{ }} - {\text{ }}{{\text{T}}_1}} \right) + \dfrac{{0.01}}{2}\left( {{{\text{T}}_2}^2{\text{ }} - {\text{ }}{{\text{T}}_1}^2} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {23\left( {{\text{1000 }} - {\text{ 300}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{100}}{{\text{0}}^2}{\text{ }} - {\text{ 30}}{{\text{0}}^2}} \right)} \right] \\
\]
Further solve the above expression
\[
\Delta H = 3 \times \left[ {23\left( {{\text{700}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{1,000,000 }} - {\text{ 90,000}}} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{0.01}}{2}\left( {{\text{910,000 }}} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{9100}}{2}} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + 4550} \right] \\
\]
Further solve the above expression
\[
\Delta H = 3 \times 20650 \\
\Rightarrow \Delta H = 61950{\text{ kJ}} \\
\Rightarrow \Delta H \simeq 62{\text{ kJ}} \\
\]
Hence, the value of the enthalpy change \[\Delta H\] for the reaction is \[62{\text{ kJ}}\] .
Hence, the option (D) is the correct option.
Note: Students should keep in mind some procedures such that, solve a definite integral according to the following formula.
\[
\int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {\text{x}} \right)_i^f + b\left( {{{\text{x}}^2}} \right)_i^f} \right] \\
\int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {{{\text{x}}_f} - {{\text{x}}_i}} \right) + b\left( {{{\text{x}}_f}^2 - {{\text{x}}_i}^2} \right)} \right] \\
\]
Here, you have integrated the function \[\left( {{\text{a + bx}}} \right)\] between the limits i and f . i and f represents initial and final values for the variable x. a and b are constants
\[\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT} \]
Then, you should substitute values in the above expression:
In the next step, you integrate the above expression within the limits of the given temperature range, and further solve the expression to obtain \[\Delta H\]value.
Complete Step by step answer: The enthalpy change and the heat capacity are mathematically related to each other.
Write an expression to obtain \[\Delta H\] from the heat capacity
\[\Delta H = n\int\limits_{{T_1}}^{{T_2}} {{C_{p,m}}dT} \]
Substitute the number of moles as 3, the initial and final temperatures as 300 and 1000 and the heat capacity of silver \[{\text{Cp}}\left( {{\text{J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)\] as \[{\text{ 23 + 0}}{\text{.01T}}\] in the above expression:
\[\Delta H = 3 \times \int\limits_{300}^{1000} {\left( {{\text{23 + 0}}{\text{.01T}}} \right)dT} \]
Integrate the above expression
\[
\Rightarrow \Delta H = 3 \times \left[ {23\left( {\text{T}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}} + \dfrac{{0.01}}{2}\left( {{{\text{T}}^2}} \right)_{{{\text{T}}_1}}^{{{\text{T}}_2}}} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {23\left( {{{\text{T}}_2}{\text{ }} - {\text{ }}{{\text{T}}_1}} \right) + \dfrac{{0.01}}{2}\left( {{{\text{T}}_2}^2{\text{ }} - {\text{ }}{{\text{T}}_1}^2} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {23\left( {{\text{1000 }} - {\text{ 300}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{100}}{{\text{0}}^2}{\text{ }} - {\text{ 30}}{{\text{0}}^2}} \right)} \right] \\
\]
Further solve the above expression
\[
\Delta H = 3 \times \left[ {23\left( {{\text{700}}} \right) + \dfrac{{0.01}}{2}\left( {{\text{1,000,000 }} - {\text{ 90,000}}} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{0.01}}{2}\left( {{\text{910,000 }}} \right)} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + \dfrac{{9100}}{2}} \right] \\
\Rightarrow \Delta H = 3 \times \left[ {16100 + 4550} \right] \\
\]
Further solve the above expression
\[
\Delta H = 3 \times 20650 \\
\Rightarrow \Delta H = 61950{\text{ kJ}} \\
\Rightarrow \Delta H \simeq 62{\text{ kJ}} \\
\]
Hence, the value of the enthalpy change \[\Delta H\] for the reaction is \[62{\text{ kJ}}\] .
Hence, the option (D) is the correct option.
Note: Students should keep in mind some procedures such that, solve a definite integral according to the following formula.
\[
\int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {\text{x}} \right)_i^f + b\left( {{{\text{x}}^2}} \right)_i^f} \right] \\
\int\limits_i^f {\left( {{\text{a + bx}}} \right)d{\text{x}}} = \left[ {a\left( {{{\text{x}}_f} - {{\text{x}}_i}} \right) + b\left( {{{\text{x}}_f}^2 - {{\text{x}}_i}^2} \right)} \right] \\
\]
Here, you have integrated the function \[\left( {{\text{a + bx}}} \right)\] between the limits i and f . i and f represents initial and final values for the variable x. a and b are constants
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

