
For real x, the greatest value of $\dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}}$ is
A. 1
B. -1
C. $\dfrac{1}{2}$
D. $\dfrac{1}{4}$
Answer
600.3k+ views
Hint- Convert the equation to quadratic form by equating the given equation to y. Apply a quadratic formula to find out the answer. (Be careful with calculations)
Complete step by step answer:
Now we know that for this we put the value equal of ‘y’
$ \Rightarrow y = \dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}}$
$ \Rightarrow y\left( {2{x^2} + 4x + 9} \right) = {x^2} + 2x + 4$
$ \Rightarrow 2{x^2}y + 4xy + 9y = {x^2} + 2x + 4$
$
\Rightarrow 2{x^2}y - {x^2} + 4xy - 2x + 9y - 4 = 0 \\
\Rightarrow {x^2}\left( {2y - 1} \right) + 2x\left( {2y - 1} \right) + 9y - 4 = 0 \\
$
Now, as we know that in ${x^2}\left( {2y - 1} \right)$ forms a quadratic equation so
$D = > 0$
${b^2} - 4ac = > 0$
Now, putting values
$
\Rightarrow {\left[ {2\left( {2y - 1} \right)} \right]^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\
\Rightarrow 4{\left( {2y - 1} \right)^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\
$
$
\Rightarrow 4\left( {2y - 1} \right)\left[ {\left( {2y - 1} \right) - \left( {9y - 4} \right)} \right] = > 0 \\
\Rightarrow 4\left( {2y - 1} \right)\left( {2y - 1 - 9y + 4} \right) = > 0 \\
$
$
\Rightarrow 4\left( {2y - 1} \right)\left( {3 - 7y} \right) = > 0 \\
\Rightarrow \left( {2y - 1} \right)\left( - \right)\left( {7y - 3} \right) = > 0 \\
\Rightarrow \left( {2y - 1} \right)\left( {7y - 3} \right) < = 0 \\
$
For,$\left( {2y - 1} \right)$
$y = \dfrac{1}{2}$
For, $\left( {7y - 3} \right)$
$y = \dfrac{3}{7}$
(Planting the above mentioned values on number line we get,)
$\dfrac{3}{7} \leqslant y \leqslant \dfrac{1}{2}$ (From here we can say that $\dfrac{1}{2}$ is the greatest value.)
Therefore, $\dfrac{1}{2}$ is our answer.
Hence, (C) is the correct option.
Note- The discriminant is the part of the quadratic formula underneath the square root symbol: b²-4ac. The discriminant tells us whether there are two solutions, one solution, or no solutions.
Complete step by step answer:
Now we know that for this we put the value equal of ‘y’
$ \Rightarrow y = \dfrac{{{x^2} + 2x + 4}}{{2{x^2} + 4x + 9}}$
$ \Rightarrow y\left( {2{x^2} + 4x + 9} \right) = {x^2} + 2x + 4$
$ \Rightarrow 2{x^2}y + 4xy + 9y = {x^2} + 2x + 4$
$
\Rightarrow 2{x^2}y - {x^2} + 4xy - 2x + 9y - 4 = 0 \\
\Rightarrow {x^2}\left( {2y - 1} \right) + 2x\left( {2y - 1} \right) + 9y - 4 = 0 \\
$
Now, as we know that in ${x^2}\left( {2y - 1} \right)$ forms a quadratic equation so
$D = > 0$
${b^2} - 4ac = > 0$
Now, putting values
$
\Rightarrow {\left[ {2\left( {2y - 1} \right)} \right]^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\
\Rightarrow 4{\left( {2y - 1} \right)^2} - 4\left( {9y - 4} \right)\left( {2y - 1} \right) = > 0 \\
$
$
\Rightarrow 4\left( {2y - 1} \right)\left[ {\left( {2y - 1} \right) - \left( {9y - 4} \right)} \right] = > 0 \\
\Rightarrow 4\left( {2y - 1} \right)\left( {2y - 1 - 9y + 4} \right) = > 0 \\
$
$
\Rightarrow 4\left( {2y - 1} \right)\left( {3 - 7y} \right) = > 0 \\
\Rightarrow \left( {2y - 1} \right)\left( - \right)\left( {7y - 3} \right) = > 0 \\
\Rightarrow \left( {2y - 1} \right)\left( {7y - 3} \right) < = 0 \\
$
For,$\left( {2y - 1} \right)$
$y = \dfrac{1}{2}$
For, $\left( {7y - 3} \right)$
$y = \dfrac{3}{7}$
(Planting the above mentioned values on number line we get,)
$\dfrac{3}{7} \leqslant y \leqslant \dfrac{1}{2}$ (From here we can say that $\dfrac{1}{2}$ is the greatest value.)
Therefore, $\dfrac{1}{2}$ is our answer.
Hence, (C) is the correct option.
Note- The discriminant is the part of the quadratic formula underneath the square root symbol: b²-4ac. The discriminant tells us whether there are two solutions, one solution, or no solutions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

