
For r = 0, 1, 2,.….10, let \[{{A}_{r}},{{B}_{r}},{{\text{C}}_{r}}\] denote respectively the coefficient of \[{{x}^{r}}\] in the expansions of
\[{{\left( 1+x \right)}^{10}},{{\left( 1+x \right)}^{20}},{{\left( 1+x \right)}^{30}}\] . Then find the value of:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
(a) \[{{B}_{10}}-{{C}_{10}}\]
(b) \[{{A}_{10}}\left( B_{10}^{2}-{{C}_{10}}{{A}_{10}} \right)\]
(c) 0
(d) \[{{C}_{10}}-{{B}_{10}}\]
Answer
600k+ views
Hint: First solve the term inside sigma algebraically, and then separate it into two terms.
After that see if you can convert the term sigma into coefficients from any expansion and urm everything in terms of A,B, C. \[\]
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]. By using this find the A, B, C and their relation.
Complete step-by-step answer:
By using binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
By using above theorem,
\[{{A}_{r}}={}^{10}{{C}_{r}}.....\left( 1 \right)\]
By applying this to find B, C, we get:
\[\begin{align}
& {{B}_{r}}={}^{20}{{C}_{r}}.....\left( 2 \right) \\
& {{C}_{r}}={}^{30}{{C}_{r}}.....\left( 3 \right) \\
\end{align}\]
We require the value of expression:
\[\sum\limits_{r=01}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
By simplifying, we get:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}{{B}_{10}}-{{C}_{10}}A_{r}^{2}}\]
By separating it into 2 terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}^{2}}\]
By substituting equation (1), equation (2), and equation (3) into the expression, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}.....\left( 4 \right)\].
Now we will separate terms from this expression.
Case-1
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}.....\left( 5 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{30}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{20}}\]
For finding the coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] by above expression we will have 10 cases.
\[1.{{x}^{20}},x.{{x}^{19}},.......,{{x}^{10}}.{{x}^{10}}\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] is equal to coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}=\] \[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] - 1).
Case-2
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}.....\left( 6 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{10}}\]
For finding the coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] by above expression we will have 10 cases.
\[1.{{x}^{10}},x.{{x}^{9}},.......,{{x}^{10}}.1\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] is equal to coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}=\] \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1).
Substitute these back into equation (4):
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]-1) - \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1)…..(7)
By binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]= \[{}^{30}{{C}_{20}}\]
Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\]=\[{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting these into equation (7), we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}\left( {}^{30}{{C}_{20}}-1 \right)-{}^{30}{{C}_{10}}\left( {}^{20}{{C}_{10}}-1 \right)\]
By simplifying, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}.{}^{30}{{C}_{20}}-{}^{20}{{C}_{10}}-{}^{30}{{C}_{10}}.{}^{20}{{C}_{10}}+{}^{30}{{C}_{10}}\]
Observe:
\[{}^{30}{{C}_{20}}={}^{30}{{C}_{10}}\]
By cancelling common terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{30}{{C}_{10}}-{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting the above values, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{C}_{10}}-{{B}_{10}}\]
Therefore option (d) is correct.
Note: Applying Binomial theorem is a crucial step in the solution. Be careful while applying, if you write any number wrong you may lead to the wrong answer.
The idea of substituting B, C and getting them back is also important, just be careful while substituting if you do wrong you get negative of the answer which is also present in options. So don’t be confused.
After that see if you can convert the term sigma into coefficients from any expansion and urm everything in terms of A,B, C. \[\]
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]. By using this find the A, B, C and their relation.
Complete step-by-step answer:
By using binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
By using above theorem,
\[{{A}_{r}}={}^{10}{{C}_{r}}.....\left( 1 \right)\]
By applying this to find B, C, we get:
\[\begin{align}
& {{B}_{r}}={}^{20}{{C}_{r}}.....\left( 2 \right) \\
& {{C}_{r}}={}^{30}{{C}_{r}}.....\left( 3 \right) \\
\end{align}\]
We require the value of expression:
\[\sum\limits_{r=01}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
By simplifying, we get:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}{{B}_{10}}-{{C}_{10}}A_{r}^{2}}\]
By separating it into 2 terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}^{2}}\]
By substituting equation (1), equation (2), and equation (3) into the expression, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}.....\left( 4 \right)\].
Now we will separate terms from this expression.
Case-1
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}.....\left( 5 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{30}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{20}}\]
For finding the coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] by above expression we will have 10 cases.
\[1.{{x}^{20}},x.{{x}^{19}},.......,{{x}^{10}}.{{x}^{10}}\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] is equal to coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}=\] \[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] - 1).
Case-2
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}.....\left( 6 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{10}}\]
For finding the coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] by above expression we will have 10 cases.
\[1.{{x}^{10}},x.{{x}^{9}},.......,{{x}^{10}}.1\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] is equal to coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}=\] \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1).
Substitute these back into equation (4):
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]-1) - \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1)…..(7)
By binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]= \[{}^{30}{{C}_{20}}\]
Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\]=\[{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting these into equation (7), we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}\left( {}^{30}{{C}_{20}}-1 \right)-{}^{30}{{C}_{10}}\left( {}^{20}{{C}_{10}}-1 \right)\]
By simplifying, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}.{}^{30}{{C}_{20}}-{}^{20}{{C}_{10}}-{}^{30}{{C}_{10}}.{}^{20}{{C}_{10}}+{}^{30}{{C}_{10}}\]
Observe:
\[{}^{30}{{C}_{20}}={}^{30}{{C}_{10}}\]
By cancelling common terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{30}{{C}_{10}}-{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting the above values, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{C}_{10}}-{{B}_{10}}\]
Therefore option (d) is correct.
Note: Applying Binomial theorem is a crucial step in the solution. Be careful while applying, if you write any number wrong you may lead to the wrong answer.
The idea of substituting B, C and getting them back is also important, just be careful while substituting if you do wrong you get negative of the answer which is also present in options. So don’t be confused.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

