
For positive integers \[{{n}_{1}}\] and \[{{n}_{2}}\] the values of the expression,
\[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{3}} \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{5}} \right)}^{{{n}_{2}}}}+{{\left( 1+{{i}^{7}} \right)}^{{{n}_{2}}}}\], where \[i=\sqrt{-1}\]
Is real if and only if
(a). \[{{n}_{1}}={{n}_{2}}+1\]
(b). \[{{n}_{1}}={{n}_{2}}-1\]
(c). \[{{n}_{1}}={{n}_{2}}\]
(d). \[{{n}_{1}}>0,{{n}_{2}}>0\]
Answer
610.8k+ views
Hint: We will first convert all the complex numbers of the form \[a+ib\] to the polar form. Then we will use the law of indices which says \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\]. This would give us all the terms in the same format of \[{{e}^{i\theta }}\] which becomes easier to solve. Finally we simplify and get the answer.
Complete step-by-step answer:
Given, expression is \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{3}} \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{5}} \right)}^{{{n}_{2}}}}+{{\left( 1+{{i}^{7}} \right)}^{{{n}_{2}}}}\].
Now, \[{{i}^{3}}\] can be written as, \[{{i}^{2+1}}={{i}^{2}}\times i\].
Now, \[i=\sqrt{-1}\], thus, \[{{i}^{2}}=-1\].
Therefore, \[{{i}^{3}}=-i\].
Now, \[{{i}^{5}}\] can be written as, \[{{i}^{4+1}}={{i}^{4}}\times i\].
Now, \[{{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}\]
\[\begin{align}
& {{i}^{4}}={{\left( -1 \right)}^{2}} \\
& {{i}^{4}}=1 \\
\end{align}\]
Thus, \[{{i}^{5}}=1\times i\]
\[{{i}^{5}}=i\]
Now, \[{{i}^{7}}={{i}^{5+2}}\]
\[{{i}^{7}}={{i}^{5}}\times {{i}^{2}}\]
Now, \[{{i}^{5}}=i\] and \[{{i}^{2}}=-1\]. Thus, \[{{i}^{7}}=i\times -1\], which is \[{{i}^{7}}=-i\].
Thus, our expression now becomes,
\[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\]
Now, let us convert all the terms of the form \[a+ib\] to polar form \[r{{e}^{i\theta }}\].
We use, \[a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}\], where \[\theta \] depends on the quadrant.
\[\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] I Quadrant.
\[\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] II Quadrant.
\[\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] III Quadrant.
\[\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] IV Quadrant.
Thus, \[1+i\] is actually (1, 1) which belongs to I Quadrant.
Thus, \[1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }},\theta ={{\tan }^{-1}}\left( \left| \dfrac{1}{1} \right| \right)\]
\[1+i=\sqrt{2}{{e}^{i\theta }},\theta ={{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
Therefore, \[1+i=\sqrt{2}{{e}^{i\dfrac{\pi }{4}}}\]
Similarly, \[1-i\] is actually (1, -1) which belongs to IV Quadrant.
Thus, \[1-i=\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }},\theta =-{{\tan }^{-1}}\left( \left| \dfrac{1}{-1} \right| \right)\]
\[1-i=\left( \sqrt{1+1} \right){{e}^{i\left( \dfrac{-\pi }{4} \right)}}\], since, \[\theta =-{{\tan }^{-1}}\left( 1 \right)=\left( \dfrac{-\pi }{4} \right)\]
\[1-i=\sqrt{2}{{e}^{\dfrac{-i\pi }{4}}}\]
Thus, the expression \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\] changes to be,
\[\begin{align}
& {{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{{{n}_{1}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{-i\pi }{4}}} \right)}^{{{n}_{1}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{{{n}_{2}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{-i\pi }{4}}} \right)}^{{{n}_{2}}}} \\
& ={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( {{e}^{\dfrac{{{n}_{1}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( {{e}^{\dfrac{-{{n}_{1}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( {{e}^{\dfrac{{{n}_{2}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( {{e}^{\dfrac{-{{n}_{2}}i\pi }{4}}} \right) \\
& ={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left[ {{e}^{\left( \dfrac{{{n}_{1}}\pi }{4} \right)i}}+{{e}^{-\left( \dfrac{{{n}_{1}}\pi }{4} \right)i}} \right]+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left[ {{e}^{\left( \dfrac{{{n}_{2}}\pi }{4} \right)i}}+{{e}^{-\left( \dfrac{{{n}_{2}}\pi }{4} \right)i}} \right] \\
\end{align}\]
(Taking out \[{{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\] and \[{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\] as common)
Now, we know Euler’s formula as, \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \] and \[{{e}^{-i\theta }}=\cos \theta -i\sin \theta \].
Adding \[{{e}^{i\theta }}\] and \[{{e}^{-i\theta }}\], we get,
\[\begin{align}
& {{e}^{i\theta }}+{{e}^{-i\theta }}=\cos \theta +i\sin \theta +\cos \theta -i\sin \theta \\
& \Rightarrow {{e}^{i\theta }}+{{e}^{-i\theta }}=2\cos \theta \\
\end{align}\]
Thus in the expression we have,
\[{{e}^{i\left( \dfrac{{{n}_{1}}\pi }{4} \right)}}+{{e}^{-i\left( \dfrac{{{n}_{1}}\pi }{4} \right)}}\] and \[{{e}^{i\left( \dfrac{{{n}_{2}}\pi }{4} \right)}}+{{e}^{-i\left( \dfrac{{{n}_{2}}\pi }{4} \right)}}\]
Replacing them with \[2\cos \left( \dfrac{{{n}_{1}}\pi }{4} \right)\] and \[2\cos \left( \dfrac{{{n}_{2}}\pi }{4} \right)\], respectively we get,
\[={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( 2\cos \left( \dfrac{{{n}_{1}}\pi }{4} \right) \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( 2\cos \left( \dfrac{{{n}_{2}}\pi }{4} \right) \right)\]
This expression is always real irrespective of what \[{{n}_{1}}\] and \[{{n}_{2}}\] values are.
But since the question says positive values of \[{{n}_{1}}\] and \[{{n}_{2}}\], we go with option (d).
Thus the correct option is option (d).
Note: A simple observation can solve this question in very less time.
Consider, \[{{\left( 1+i \right)}^{1}}+{{\left( 1-i \right)}^{1}}\].
This becomes \[1+i+1-i=2\], which is real.
Now, consider, \[{{\left( 1+i \right)}^{2}}+{{\left( 1-i \right)}^{2}}\].
This becomes, \[1+2i+{{i}^{2}}+1-2i+{{i}^{2}}\], which is \[2+2{{i}^{2}}\]. Since, \[{{i}^{2}}=-1\], \[2+2{{i}^{2}}=0\], which is real.
Now, consider, \[{{\left( 1+i \right)}^{3}}+{{\left( 1-i \right)}^{3}}\], which becomes, \[1+3i+3{{i}^{2}}+{{i}^{3}}+1-3i+3{{i}^{2}}-{{i}^{3}}\], which is \[2+6{{i}^{2}}\].
Since, \[{{i}^{2}}=-1\], \[2+6{{i}^{2}}=-4\], which is real.
Thus, \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\] is independent of \[{{n}_{1}}\] and \[{{n}_{2}}\].
Thus we got with option (d) as the question says positive integers.
Complete step-by-step answer:
Given, expression is \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{3}} \right)}^{{{n}_{1}}}}+{{\left( 1+{{i}^{5}} \right)}^{{{n}_{2}}}}+{{\left( 1+{{i}^{7}} \right)}^{{{n}_{2}}}}\].
Now, \[{{i}^{3}}\] can be written as, \[{{i}^{2+1}}={{i}^{2}}\times i\].
Now, \[i=\sqrt{-1}\], thus, \[{{i}^{2}}=-1\].
Therefore, \[{{i}^{3}}=-i\].
Now, \[{{i}^{5}}\] can be written as, \[{{i}^{4+1}}={{i}^{4}}\times i\].
Now, \[{{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}\]
\[\begin{align}
& {{i}^{4}}={{\left( -1 \right)}^{2}} \\
& {{i}^{4}}=1 \\
\end{align}\]
Thus, \[{{i}^{5}}=1\times i\]
\[{{i}^{5}}=i\]
Now, \[{{i}^{7}}={{i}^{5+2}}\]
\[{{i}^{7}}={{i}^{5}}\times {{i}^{2}}\]
Now, \[{{i}^{5}}=i\] and \[{{i}^{2}}=-1\]. Thus, \[{{i}^{7}}=i\times -1\], which is \[{{i}^{7}}=-i\].
Thus, our expression now becomes,
\[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\]
Now, let us convert all the terms of the form \[a+ib\] to polar form \[r{{e}^{i\theta }}\].
We use, \[a+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }}\], where \[\theta \] depends on the quadrant.
\[\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] I Quadrant.
\[\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] II Quadrant.
\[\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] III Quadrant.
\[\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right)\], if \[\left( a,b \right)\in \] IV Quadrant.
Thus, \[1+i\] is actually (1, 1) which belongs to I Quadrant.
Thus, \[1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }},\theta ={{\tan }^{-1}}\left( \left| \dfrac{1}{1} \right| \right)\]
\[1+i=\sqrt{2}{{e}^{i\theta }},\theta ={{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
Therefore, \[1+i=\sqrt{2}{{e}^{i\dfrac{\pi }{4}}}\]
Similarly, \[1-i\] is actually (1, -1) which belongs to IV Quadrant.
Thus, \[1-i=\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }},\theta =-{{\tan }^{-1}}\left( \left| \dfrac{1}{-1} \right| \right)\]
\[1-i=\left( \sqrt{1+1} \right){{e}^{i\left( \dfrac{-\pi }{4} \right)}}\], since, \[\theta =-{{\tan }^{-1}}\left( 1 \right)=\left( \dfrac{-\pi }{4} \right)\]
\[1-i=\sqrt{2}{{e}^{\dfrac{-i\pi }{4}}}\]
Thus, the expression \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\] changes to be,
\[\begin{align}
& {{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{{{n}_{1}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{-i\pi }{4}}} \right)}^{{{n}_{1}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{{{n}_{2}}}}+{{\left( \sqrt{2}{{e}^{\dfrac{-i\pi }{4}}} \right)}^{{{n}_{2}}}} \\
& ={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( {{e}^{\dfrac{{{n}_{1}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( {{e}^{\dfrac{-{{n}_{1}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( {{e}^{\dfrac{{{n}_{2}}i\pi }{4}}} \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( {{e}^{\dfrac{-{{n}_{2}}i\pi }{4}}} \right) \\
& ={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left[ {{e}^{\left( \dfrac{{{n}_{1}}\pi }{4} \right)i}}+{{e}^{-\left( \dfrac{{{n}_{1}}\pi }{4} \right)i}} \right]+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left[ {{e}^{\left( \dfrac{{{n}_{2}}\pi }{4} \right)i}}+{{e}^{-\left( \dfrac{{{n}_{2}}\pi }{4} \right)i}} \right] \\
\end{align}\]
(Taking out \[{{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\] and \[{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\] as common)
Now, we know Euler’s formula as, \[{{e}^{i\theta }}=\cos \theta +i\sin \theta \] and \[{{e}^{-i\theta }}=\cos \theta -i\sin \theta \].
Adding \[{{e}^{i\theta }}\] and \[{{e}^{-i\theta }}\], we get,
\[\begin{align}
& {{e}^{i\theta }}+{{e}^{-i\theta }}=\cos \theta +i\sin \theta +\cos \theta -i\sin \theta \\
& \Rightarrow {{e}^{i\theta }}+{{e}^{-i\theta }}=2\cos \theta \\
\end{align}\]
Thus in the expression we have,
\[{{e}^{i\left( \dfrac{{{n}_{1}}\pi }{4} \right)}}+{{e}^{-i\left( \dfrac{{{n}_{1}}\pi }{4} \right)}}\] and \[{{e}^{i\left( \dfrac{{{n}_{2}}\pi }{4} \right)}}+{{e}^{-i\left( \dfrac{{{n}_{2}}\pi }{4} \right)}}\]
Replacing them with \[2\cos \left( \dfrac{{{n}_{1}}\pi }{4} \right)\] and \[2\cos \left( \dfrac{{{n}_{2}}\pi }{4} \right)\], respectively we get,
\[={{\left( \sqrt{2} \right)}^{{{n}_{1}}}}\left( 2\cos \left( \dfrac{{{n}_{1}}\pi }{4} \right) \right)+{{\left( \sqrt{2} \right)}^{{{n}_{2}}}}\left( 2\cos \left( \dfrac{{{n}_{2}}\pi }{4} \right) \right)\]
This expression is always real irrespective of what \[{{n}_{1}}\] and \[{{n}_{2}}\] values are.
But since the question says positive values of \[{{n}_{1}}\] and \[{{n}_{2}}\], we go with option (d).
Thus the correct option is option (d).
Note: A simple observation can solve this question in very less time.
Consider, \[{{\left( 1+i \right)}^{1}}+{{\left( 1-i \right)}^{1}}\].
This becomes \[1+i+1-i=2\], which is real.
Now, consider, \[{{\left( 1+i \right)}^{2}}+{{\left( 1-i \right)}^{2}}\].
This becomes, \[1+2i+{{i}^{2}}+1-2i+{{i}^{2}}\], which is \[2+2{{i}^{2}}\]. Since, \[{{i}^{2}}=-1\], \[2+2{{i}^{2}}=0\], which is real.
Now, consider, \[{{\left( 1+i \right)}^{3}}+{{\left( 1-i \right)}^{3}}\], which becomes, \[1+3i+3{{i}^{2}}+{{i}^{3}}+1-3i+3{{i}^{2}}-{{i}^{3}}\], which is \[2+6{{i}^{2}}\].
Since, \[{{i}^{2}}=-1\], \[2+6{{i}^{2}}=-4\], which is real.
Thus, \[{{\left( 1+i \right)}^{{{n}_{1}}}}+{{\left( 1-i \right)}^{{{n}_{1}}}}+{{\left( 1+i \right)}^{{{n}_{2}}}}+{{\left( 1-i \right)}^{{{n}_{2}}}}\] is independent of \[{{n}_{1}}\] and \[{{n}_{2}}\].
Thus we got with option (d) as the question says positive integers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

