
For He ion, the only incorrect combination is:
Column \[1\] Column \[2\] Column \[3\] \[1s\] Orbital (i)\[\;{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}\] (P)
\[2s\] Orbital (ii) one radial node (Q) Probability density at nucleus \[2{p_z}\] Orbital (iii) \[{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{5}{2}}}r{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}\cos \theta \] (R) Probability density is maximum at nucleus \[3d_z^2\] Orbital (iv) xy-plane is a nodal plane (S) Energy needed to excite an electron from \[n = 2\] state to \[n = 4\] state is \[\dfrac{{27}}{{32}}\] times the energy needed to excite an electron from \[n = 2\] state to \[n = 6\] state.
A. (I) (iii) (R)
B. (II) (ii) (Q)
C. (I) (i) (S)
D. (I) (i) (R)
| Column \[1\] | Column \[2\] | Column \[3\] |
| \[1s\] Orbital | (i)\[\;{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{3}{2}}}{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}\] | (P)
|
| \[2s\] Orbital | (ii) one radial node | (Q) Probability density at nucleus |
| \[2{p_z}\] Orbital | (iii) \[{\psi _{n,l,{m_l}}}\;a{\left( {\dfrac{Z}{{{a_0}}}} \right)^{\dfrac{5}{2}}}r{e^{ - \left( {\dfrac{{{Z_r}}}{{{a_0}}}} \right)}}\cos \theta \] | (R) Probability density is maximum at nucleus |
| \[3d_z^2\] Orbital | (iv) xy-plane is a nodal plane | (S) Energy needed to excite an electron from \[n = 2\] state to \[n = 4\] state is \[\dfrac{{27}}{{32}}\] times the energy needed to excite an electron from \[n = 2\] state to \[n = 6\] state. |
Answer
561.6k+ views
Hint: Helium ion is nothing but the one electron is given away form one s-orbital out of two and positive charge is acquired as we know that one electron is present in hydrogen is the same way only one electron will remain in the helium ion, hence it will behave as atom with only one electron.
Complete Step by step answer: As we know that hydrogen is the simplest atom containing only one electron. \[{\rm{n,}}\,{\rm{l,}}\,{{\rm{m}}_{\rm{l}}}\] resembles the principle quantum number, azimuthal quantum number and magnetic quantum number respectively. Radial node is measured from \[{\rm{n,}}\,{\rm{l}}\] values. The probability density of finding the electron is never \[100\% \] because electrons are having Heisenberg uncertainty principle.
We will see the column one by one
In column 1, we will determine the radial nodes of the given orbitals by the formula
\[{\rm{radial}}\,{\rm{node = }}\,{\rm{n - l - 1}}\]
For \[{\rm{1s}}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,1{\rm{ - 0 - 1 = }}\,0\]
For \[{\rm{2s}}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,2{\rm{ - 0 - 1 = }}\,1\]
For \[{\rm{3}}{{\rm{p}}_z}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,{\rm{3 - 1 - 1 = }}\,{\rm{1}}\]
For \[{\rm{3d}}_z^2\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,3{\rm{ - 2 - 1 = }}\,0\]
Now, we could see from above explanation, the radial nodes is one for \[{\rm{2s}}\] and \[{\rm{3}}{{\rm{p}}_z}\] orbitals but the graph for \[{\rm{2s}}\]orbital is shown as
By the formula
\[\begin{array}{l}
{{\rm{R}}_{{\rm{2,0}}}}{\rm{ = }}\dfrac{{\rm{1}}}{{\sqrt {{\rm{32\pi }}} }}\dfrac{{\rm{1}}}{{{\rm{a}}_{\rm{0}}^{\dfrac{{\rm{3}}}{{\rm{2}}}}}}\left( {{\rm{2 - }}\dfrac{{\rm{r}}}{{{{\rm{a}}_{\rm{0}}}}}} \right){{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{\rm{r}}}{{{\rm{2}}{{\rm{a}}_{\rm{0}}}}}} \right)}\\
{\rm{y = }}\left( {{\rm{2 - x}}} \right)\,{{\rm{e}}^{{\rm{ - x}}}}
\end{array}\]
Appling above formula we have values along \[{\rm{x}}\]and \[{\rm{y}}\] direction as-
And the graph for \[{\rm{3}}{{\rm{p}}_z}\]orbital is shown as-
Therefore, our correct option is option (A) (I) (iii) (R).
Note: \[{{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}{\rm{a}}{\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{{\rm{3}}}{{\rm{2}}}}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}\] belongs to orbital \[{\rm{1s}}\] where principle quantum number can be calculated by \[{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}\] and azimuthal quantum number is calculated by minimum power of \[{\rm{r}}\] or maximum power of \[{\rm{Sin\theta Cos\theta }}\].
Energy of one-dimensional box is calculated by –
\[{{\rm{E}}_{\rm{x}}}{\rm{ = }}\dfrac{{{\rm{n}}_{\rm{x}}^{\rm{2}}{{\rm{h}}^{\rm{2}}}}}{{{\rm{8m}}{{\rm{l}}^{\rm{2}}}}}\]
Helium ion is nothing but the one electron is given away form one s-orbital out of two and positive charge is acquired as we know that one electron is present in hydrogen is the same way only one electron will remain in the helium ion, hence it will behave as atom with only one electron.
Complete Step by step answer: As we know that hydrogen is the simplest atom containing only one electron. \[{\rm{n,}}\,{\rm{l,}}\,{{\rm{m}}_{\rm{l}}}\] resembles the principle quantum number, azimuthal quantum number and magnetic quantum number respectively. Radial node is measured from \[{\rm{n,}}\,{\rm{l}}\] values. The probability density of finding the electron is never \[100\% \] because electrons are having Heisenberg uncertainty principle.
We will see the column one by one
In column 1, we will determine the radial nodes of the given orbitals by the formula
\[{\rm{radial}}\,{\rm{node = }}\,{\rm{n - l - 1}}\]
For \[{\rm{1s}}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,1{\rm{ - 0 - 1 = }}\,0\]
For \[{\rm{2s}}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,2{\rm{ - 0 - 1 = }}\,1\]
For \[{\rm{3}}{{\rm{p}}_z}\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,{\rm{3 - 1 - 1 = }}\,{\rm{1}}\]
For \[{\rm{3d}}_z^2\]orbital
\[\Rightarrow {\rm{radial}}\,{\rm{node}}\,{\rm{ = }}\,3{\rm{ - 2 - 1 = }}\,0\]
Now, we could see from above explanation, the radial nodes is one for \[{\rm{2s}}\] and \[{\rm{3}}{{\rm{p}}_z}\] orbitals but the graph for \[{\rm{2s}}\]orbital is shown as
By the formula
\[\begin{array}{l}
{{\rm{R}}_{{\rm{2,0}}}}{\rm{ = }}\dfrac{{\rm{1}}}{{\sqrt {{\rm{32\pi }}} }}\dfrac{{\rm{1}}}{{{\rm{a}}_{\rm{0}}^{\dfrac{{\rm{3}}}{{\rm{2}}}}}}\left( {{\rm{2 - }}\dfrac{{\rm{r}}}{{{{\rm{a}}_{\rm{0}}}}}} \right){{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{\rm{r}}}{{{\rm{2}}{{\rm{a}}_{\rm{0}}}}}} \right)}\\
{\rm{y = }}\left( {{\rm{2 - x}}} \right)\,{{\rm{e}}^{{\rm{ - x}}}}
\end{array}\]
Appling above formula we have values along \[{\rm{x}}\]and \[{\rm{y}}\] direction as-
And the graph for \[{\rm{3}}{{\rm{p}}_z}\]orbital is shown as-
Therefore, our correct option is option (A) (I) (iii) (R).
Note: \[{{\rm{\varphi }}_{{\rm{n,l,}}{{\rm{m}}_{\rm{l}}}}}{\rm{a}}{\left( {\dfrac{{\rm{Z}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)^{\dfrac{{\rm{3}}}{{\rm{2}}}}}{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}\] belongs to orbital \[{\rm{1s}}\] where principle quantum number can be calculated by \[{{\rm{e}}^{\rm{ - }}}^{\left( {\dfrac{{{\rm{Zr}}}}{{{{\rm{a}}_{\rm{0}}}}}} \right)}\] and azimuthal quantum number is calculated by minimum power of \[{\rm{r}}\] or maximum power of \[{\rm{Sin\theta Cos\theta }}\].
Energy of one-dimensional box is calculated by –
\[{{\rm{E}}_{\rm{x}}}{\rm{ = }}\dfrac{{{\rm{n}}_{\rm{x}}^{\rm{2}}{{\rm{h}}^{\rm{2}}}}}{{{\rm{8m}}{{\rm{l}}^{\rm{2}}}}}\]
Helium ion is nothing but the one electron is given away form one s-orbital out of two and positive charge is acquired as we know that one electron is present in hydrogen is the same way only one electron will remain in the helium ion, hence it will behave as atom with only one electron.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

The equivalent weight of Mohrs salt FeSO4 NH42SO4 6H2O class 11 chemistry CBSE

