
For given vectors, $\overrightarrow a = 2\widehat i - \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + \widehat j - \widehat k$, find the unit vector in the direction of the vector $\overrightarrow a + \overrightarrow b $.
Answer
592.5k+ views
Hint- Here, we will proceed by adding the given two vectors in order to obtain vector $\overrightarrow a + \overrightarrow b $ then we will divide this vector with its magnitude which will result in the unit vector in the direction of vector $\overrightarrow a + \overrightarrow b $.
“Complete step-by-step answer:”
Given two vectors are $\overrightarrow a = 2\widehat i - \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + \widehat j - \widehat k$
As we know that the sum of any two vectors can be obtained by adding the corresponding components of those vectors (or by adding the corresponding coefficients of $\widehat i,\widehat j,\widehat k$ in the two vectors).
i.e., $
\overrightarrow a + \overrightarrow b = 2\widehat i - \widehat j + 2\widehat k + \left( { - \widehat i + \widehat j - \widehat k} \right) \\
\Rightarrow \overrightarrow a + \overrightarrow b = \left( {2 - 1} \right)\widehat i + \left( { - 1 + 1} \right)\widehat j + \left( {2 - 1} \right)\widehat k \\
\Rightarrow \overrightarrow a + \overrightarrow b = \widehat i - 0\widehat j + \widehat k \\
\Rightarrow \overrightarrow a + \overrightarrow b = \widehat i + \widehat k \\
$
Also, we know that in order to find the unit vector in the direction of any given vector we will simply divide the given vector with the magnitude of that vector.
Magnitude for any vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$ is given by $\left| {\overrightarrow x } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
Unit vector in the direction of any vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$ is given by $\widehat x = \dfrac{{\overrightarrow x }}{{\left| {\overrightarrow x } \right|}} = \dfrac{{a\widehat i + b\widehat j + c\widehat k}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$
Now compare the coefficients of $\widehat i,\widehat j,\widehat k$ in the vector $\overrightarrow a + \overrightarrow b = \widehat i + \widehat k$ with general vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$. From here we will get the values of a, b and c as a=1, b=0 and c=1.
The unit vector $\widehat u$ in the direction of the vector $\overrightarrow a + \overrightarrow b $, is given by
$
\widehat u = \dfrac{{\overrightarrow a + \overrightarrow b }}{{\left| {\overrightarrow a + \overrightarrow b } \right|}} = \dfrac{{\widehat i + \widehat k}}{{\sqrt {{1^2} + {0^2} + {1^2}} }} = \dfrac{{\widehat i + \widehat k}}{{\sqrt 2 }} \\
\widehat u = \dfrac{{\widehat i}}{{\sqrt 2 }} + \dfrac{{\widehat k}}{{\sqrt 2 }} \\
$
Therefore, $\dfrac{{\widehat i}}{{\sqrt 2 }} + \dfrac{{\widehat k}}{{\sqrt 2 }}$ is the required unit vector in the direction of vector $\overrightarrow a + \overrightarrow b $.
Note- In this particular problem,In order to find the unit vector in the direction of any given vector we will simply divide the given vector with the magnitude of that vector.we have Also, a unit vector is the vector having unit magnitude.
“Complete step-by-step answer:”
Given two vectors are $\overrightarrow a = 2\widehat i - \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + \widehat j - \widehat k$
As we know that the sum of any two vectors can be obtained by adding the corresponding components of those vectors (or by adding the corresponding coefficients of $\widehat i,\widehat j,\widehat k$ in the two vectors).
i.e., $
\overrightarrow a + \overrightarrow b = 2\widehat i - \widehat j + 2\widehat k + \left( { - \widehat i + \widehat j - \widehat k} \right) \\
\Rightarrow \overrightarrow a + \overrightarrow b = \left( {2 - 1} \right)\widehat i + \left( { - 1 + 1} \right)\widehat j + \left( {2 - 1} \right)\widehat k \\
\Rightarrow \overrightarrow a + \overrightarrow b = \widehat i - 0\widehat j + \widehat k \\
\Rightarrow \overrightarrow a + \overrightarrow b = \widehat i + \widehat k \\
$
Also, we know that in order to find the unit vector in the direction of any given vector we will simply divide the given vector with the magnitude of that vector.
Magnitude for any vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$ is given by $\left| {\overrightarrow x } \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
Unit vector in the direction of any vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$ is given by $\widehat x = \dfrac{{\overrightarrow x }}{{\left| {\overrightarrow x } \right|}} = \dfrac{{a\widehat i + b\widehat j + c\widehat k}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}$
Now compare the coefficients of $\widehat i,\widehat j,\widehat k$ in the vector $\overrightarrow a + \overrightarrow b = \widehat i + \widehat k$ with general vector $\overrightarrow x = a\widehat i + b\widehat j + c\widehat k$. From here we will get the values of a, b and c as a=1, b=0 and c=1.
The unit vector $\widehat u$ in the direction of the vector $\overrightarrow a + \overrightarrow b $, is given by
$
\widehat u = \dfrac{{\overrightarrow a + \overrightarrow b }}{{\left| {\overrightarrow a + \overrightarrow b } \right|}} = \dfrac{{\widehat i + \widehat k}}{{\sqrt {{1^2} + {0^2} + {1^2}} }} = \dfrac{{\widehat i + \widehat k}}{{\sqrt 2 }} \\
\widehat u = \dfrac{{\widehat i}}{{\sqrt 2 }} + \dfrac{{\widehat k}}{{\sqrt 2 }} \\
$
Therefore, $\dfrac{{\widehat i}}{{\sqrt 2 }} + \dfrac{{\widehat k}}{{\sqrt 2 }}$ is the required unit vector in the direction of vector $\overrightarrow a + \overrightarrow b $.
Note- In this particular problem,In order to find the unit vector in the direction of any given vector we will simply divide the given vector with the magnitude of that vector.we have Also, a unit vector is the vector having unit magnitude.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

