
For each positive integer $n$ , let ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ . For $x \in \mathbb{R}$ , let $\left[ x \right]$ be the greatest integer function less than or equal to $x$ , if $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , then the value of $\left[ L \right]$ is _______ .
Answer
478.2k+ views
Hint: In this question, we are given a sequence ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ , whose limit is $L$ at $n \to \infty $ .
First, we’ll take $n$ common and then, take ln on both sides. Then we will convert the summation into integration and finally integrate it to get the value of $L$ .
For a series in summation can be written as $\left( {a + 1} \right) + \left( {a + 2} \right) + ...\left( {a + n} \right) = \sum\limits_{r = 1}^n {\left( {a + r} \right)} $ .
For a given summation of the form $\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\left( {1 + \dfrac{r}{n}} \right)} } \right]$ can be converted into integration as $\int\limits_0^1 {\left( {1 + x} \right)dx} $ by putting $\dfrac{r}{n} = x$ .
On differentiating with respect to $r$ , we get, $dx = \dfrac{1}{n}$ .
Lower limit $ = \dfrac{{d\left( 1 \right)}}{{dn}} = 0$ and upper limit $ = \dfrac{{d\left( n \right)}}{{dn}} = 1$ .
Complete answer:
Given series ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ and it is also given that $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ .
To find the value of $\left[ L \right]$ .
First, taking $n$ common, we get.
$\begin{gathered}
{y_n} = \dfrac{1}{n}{\left[ {{n^n}\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = \dfrac{n}{n}{\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\end{gathered} $
Now, taking $\ln $ on both sides, we get,
\[\begin{gathered}
\ln {y_n} = \ln {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\ln {y_n} = \dfrac{1}{n}\left[ {\ln \left( {1 + \dfrac{1}{n}} \right) + \ln \left( {1 + \dfrac{2}{n}} \right) + ...\ln \left( {1 + \dfrac{n}{n}} \right)} \right] \\
\end{gathered} \]
which can be written as, $\ln {y_n} = \dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} $ .
Now, taking $\mathop {\lim }\limits_{n \to \infty } $ on both sides, we get, \[\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} } \right]\] .
Now, we will convert it into integration as explained above, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \int\limits_0^1 {\ln \left( {1 + x} \right)dx} $ .
Now, integrating with respect to $x$ , we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{1}{{1 + x}} \cdot xdx} $
Adding and subtracting $1$ on the numerator, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{{1 + x - 1}}{{1 + x}}dx} $ , which can be written as $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {1 - \dfrac{1}{{1 + x}}dx} $ i.e., $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \left[ {x - \ln (1 + x)} \right]_0^1$ .
Finally, applying limits, we get,
$\begin{gathered}
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {1 \cdot \ln 2 - 0} \right] - \left[ {1 - \ln 2 - 0} \right] \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 2 - 1 + \ln 2 = 2\ln 2 - 1 \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - 1 \\
\end{gathered} $
Now, $1$ can be written as $\ln e$ , $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - \ln e$ .
We know that, $\ln a - \ln b = \ln \dfrac{a}{b}$ , so using this property, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \dfrac{4}{e}$ .
Now, we have that, $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , hence, replacing it, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \left( {\mathop {\lim }\limits_{n \to \infty } {y_n}} \right) = \ln L$ .
Thus, $\ln L = \ln \dfrac{4}{e}$ , i.e., $L = \dfrac{4}{e}$ , whose values is approximately equal to $L = \dfrac{4}{{2.71}} = 1.47$ .
Hence, the value for $\left[ L \right] = 1$ .
Note: Properties of $\ln $ , which are $\ln {a^b} = b\ln a$ and $\ln a - \ln b = \ln \dfrac{a}{b}$ has to be kept in mind.
Since, $\ln e = 1$ as the base for natural log is $e$ , so, we can replace $1$ by $\ln e$ .
Value of $e = 2.718281828459045235602874713527$ , but while solving, we can round it to $100$ .
First, we’ll take $n$ common and then, take ln on both sides. Then we will convert the summation into integration and finally integrate it to get the value of $L$ .
For a series in summation can be written as $\left( {a + 1} \right) + \left( {a + 2} \right) + ...\left( {a + n} \right) = \sum\limits_{r = 1}^n {\left( {a + r} \right)} $ .
For a given summation of the form $\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\left( {1 + \dfrac{r}{n}} \right)} } \right]$ can be converted into integration as $\int\limits_0^1 {\left( {1 + x} \right)dx} $ by putting $\dfrac{r}{n} = x$ .
On differentiating with respect to $r$ , we get, $dx = \dfrac{1}{n}$ .
Lower limit $ = \dfrac{{d\left( 1 \right)}}{{dn}} = 0$ and upper limit $ = \dfrac{{d\left( n \right)}}{{dn}} = 1$ .
Complete answer:
Given series ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ and it is also given that $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ .
To find the value of $\left[ L \right]$ .
First, taking $n$ common, we get.
$\begin{gathered}
{y_n} = \dfrac{1}{n}{\left[ {{n^n}\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = \dfrac{n}{n}{\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\end{gathered} $
Now, taking $\ln $ on both sides, we get,
\[\begin{gathered}
\ln {y_n} = \ln {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\ln {y_n} = \dfrac{1}{n}\left[ {\ln \left( {1 + \dfrac{1}{n}} \right) + \ln \left( {1 + \dfrac{2}{n}} \right) + ...\ln \left( {1 + \dfrac{n}{n}} \right)} \right] \\
\end{gathered} \]
which can be written as, $\ln {y_n} = \dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} $ .
Now, taking $\mathop {\lim }\limits_{n \to \infty } $ on both sides, we get, \[\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} } \right]\] .
Now, we will convert it into integration as explained above, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \int\limits_0^1 {\ln \left( {1 + x} \right)dx} $ .
Now, integrating with respect to $x$ , we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{1}{{1 + x}} \cdot xdx} $
Adding and subtracting $1$ on the numerator, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{{1 + x - 1}}{{1 + x}}dx} $ , which can be written as $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {1 - \dfrac{1}{{1 + x}}dx} $ i.e., $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \left[ {x - \ln (1 + x)} \right]_0^1$ .
Finally, applying limits, we get,
$\begin{gathered}
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {1 \cdot \ln 2 - 0} \right] - \left[ {1 - \ln 2 - 0} \right] \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 2 - 1 + \ln 2 = 2\ln 2 - 1 \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - 1 \\
\end{gathered} $
Now, $1$ can be written as $\ln e$ , $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - \ln e$ .
We know that, $\ln a - \ln b = \ln \dfrac{a}{b}$ , so using this property, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \dfrac{4}{e}$ .
Now, we have that, $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , hence, replacing it, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \left( {\mathop {\lim }\limits_{n \to \infty } {y_n}} \right) = \ln L$ .
Thus, $\ln L = \ln \dfrac{4}{e}$ , i.e., $L = \dfrac{4}{e}$ , whose values is approximately equal to $L = \dfrac{4}{{2.71}} = 1.47$ .
Hence, the value for $\left[ L \right] = 1$ .
Note: Properties of $\ln $ , which are $\ln {a^b} = b\ln a$ and $\ln a - \ln b = \ln \dfrac{a}{b}$ has to be kept in mind.
Since, $\ln e = 1$ as the base for natural log is $e$ , so, we can replace $1$ by $\ln e$ .
Value of $e = 2.718281828459045235602874713527$ , but while solving, we can round it to $100$ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

