
For each positive integer $n$ , let ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ . For $x \in \mathbb{R}$ , let $\left[ x \right]$ be the greatest integer function less than or equal to $x$ , if $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , then the value of $\left[ L \right]$ is _______ .
Answer
464.1k+ views
Hint: In this question, we are given a sequence ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ , whose limit is $L$ at $n \to \infty $ .
First, we’ll take $n$ common and then, take ln on both sides. Then we will convert the summation into integration and finally integrate it to get the value of $L$ .
For a series in summation can be written as $\left( {a + 1} \right) + \left( {a + 2} \right) + ...\left( {a + n} \right) = \sum\limits_{r = 1}^n {\left( {a + r} \right)} $ .
For a given summation of the form $\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\left( {1 + \dfrac{r}{n}} \right)} } \right]$ can be converted into integration as $\int\limits_0^1 {\left( {1 + x} \right)dx} $ by putting $\dfrac{r}{n} = x$ .
On differentiating with respect to $r$ , we get, $dx = \dfrac{1}{n}$ .
Lower limit $ = \dfrac{{d\left( 1 \right)}}{{dn}} = 0$ and upper limit $ = \dfrac{{d\left( n \right)}}{{dn}} = 1$ .
Complete answer:
Given series ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ and it is also given that $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ .
To find the value of $\left[ L \right]$ .
First, taking $n$ common, we get.
$\begin{gathered}
{y_n} = \dfrac{1}{n}{\left[ {{n^n}\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = \dfrac{n}{n}{\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\end{gathered} $
Now, taking $\ln $ on both sides, we get,
\[\begin{gathered}
\ln {y_n} = \ln {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\ln {y_n} = \dfrac{1}{n}\left[ {\ln \left( {1 + \dfrac{1}{n}} \right) + \ln \left( {1 + \dfrac{2}{n}} \right) + ...\ln \left( {1 + \dfrac{n}{n}} \right)} \right] \\
\end{gathered} \]
which can be written as, $\ln {y_n} = \dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} $ .
Now, taking $\mathop {\lim }\limits_{n \to \infty } $ on both sides, we get, \[\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} } \right]\] .
Now, we will convert it into integration as explained above, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \int\limits_0^1 {\ln \left( {1 + x} \right)dx} $ .
Now, integrating with respect to $x$ , we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{1}{{1 + x}} \cdot xdx} $
Adding and subtracting $1$ on the numerator, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{{1 + x - 1}}{{1 + x}}dx} $ , which can be written as $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {1 - \dfrac{1}{{1 + x}}dx} $ i.e., $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \left[ {x - \ln (1 + x)} \right]_0^1$ .
Finally, applying limits, we get,
$\begin{gathered}
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {1 \cdot \ln 2 - 0} \right] - \left[ {1 - \ln 2 - 0} \right] \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 2 - 1 + \ln 2 = 2\ln 2 - 1 \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - 1 \\
\end{gathered} $
Now, $1$ can be written as $\ln e$ , $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - \ln e$ .
We know that, $\ln a - \ln b = \ln \dfrac{a}{b}$ , so using this property, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \dfrac{4}{e}$ .
Now, we have that, $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , hence, replacing it, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \left( {\mathop {\lim }\limits_{n \to \infty } {y_n}} \right) = \ln L$ .
Thus, $\ln L = \ln \dfrac{4}{e}$ , i.e., $L = \dfrac{4}{e}$ , whose values is approximately equal to $L = \dfrac{4}{{2.71}} = 1.47$ .
Hence, the value for $\left[ L \right] = 1$ .
Note: Properties of $\ln $ , which are $\ln {a^b} = b\ln a$ and $\ln a - \ln b = \ln \dfrac{a}{b}$ has to be kept in mind.
Since, $\ln e = 1$ as the base for natural log is $e$ , so, we can replace $1$ by $\ln e$ .
Value of $e = 2.718281828459045235602874713527$ , but while solving, we can round it to $100$ .
First, we’ll take $n$ common and then, take ln on both sides. Then we will convert the summation into integration and finally integrate it to get the value of $L$ .
For a series in summation can be written as $\left( {a + 1} \right) + \left( {a + 2} \right) + ...\left( {a + n} \right) = \sum\limits_{r = 1}^n {\left( {a + r} \right)} $ .
For a given summation of the form $\mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\left( {1 + \dfrac{r}{n}} \right)} } \right]$ can be converted into integration as $\int\limits_0^1 {\left( {1 + x} \right)dx} $ by putting $\dfrac{r}{n} = x$ .
On differentiating with respect to $r$ , we get, $dx = \dfrac{1}{n}$ .
Lower limit $ = \dfrac{{d\left( 1 \right)}}{{dn}} = 0$ and upper limit $ = \dfrac{{d\left( n \right)}}{{dn}} = 1$ .
Complete answer:
Given series ${y_n} = \dfrac{1}{n}\left( {n + 1} \right)\left( {n + 2} \right)...{\left( {n + n} \right)^{\dfrac{1}{n}}}$ and it is also given that $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ .
To find the value of $\left[ L \right]$ .
First, taking $n$ common, we get.
$\begin{gathered}
{y_n} = \dfrac{1}{n}{\left[ {{n^n}\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = \dfrac{n}{n}{\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
{y_n} = {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\end{gathered} $
Now, taking $\ln $ on both sides, we get,
\[\begin{gathered}
\ln {y_n} = \ln {\left[ {\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)...\left( {1 + \dfrac{n}{n}} \right)} \right]^{\dfrac{1}{n}}} \\
\ln {y_n} = \dfrac{1}{n}\left[ {\ln \left( {1 + \dfrac{1}{n}} \right) + \ln \left( {1 + \dfrac{2}{n}} \right) + ...\ln \left( {1 + \dfrac{n}{n}} \right)} \right] \\
\end{gathered} \]
which can be written as, $\ln {y_n} = \dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} $ .
Now, taking $\mathop {\lim }\limits_{n \to \infty } $ on both sides, we get, \[\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{1}{n}\sum\limits_{r = 1}^n {\ln \left( {1 + \dfrac{r}{n}} \right)} } \right]\] .
Now, we will convert it into integration as explained above, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \int\limits_0^1 {\ln \left( {1 + x} \right)dx} $ .
Now, integrating with respect to $x$ , we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{1}{{1 + x}} \cdot xdx} $
Adding and subtracting $1$ on the numerator, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {\dfrac{{1 + x - 1}}{{1 + x}}dx} $ , which can be written as $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \int\limits_0^1 {1 - \dfrac{1}{{1 + x}}dx} $ i.e., $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {x\ln (1 + x)} \right]_0^1 - \left[ {x - \ln (1 + x)} \right]_0^1$ .
Finally, applying limits, we get,
$\begin{gathered}
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \left[ {1 \cdot \ln 2 - 0} \right] - \left[ {1 - \ln 2 - 0} \right] \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 2 - 1 + \ln 2 = 2\ln 2 - 1 \\
\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - 1 \\
\end{gathered} $
Now, $1$ can be written as $\ln e$ , $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln 4 - \ln e$ .
We know that, $\ln a - \ln b = \ln \dfrac{a}{b}$ , so using this property, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \dfrac{4}{e}$ .
Now, we have that, $\mathop {\lim }\limits_{n \to \infty } {y_n} = L$ , hence, replacing it, we get, $\mathop {\lim }\limits_{n \to \infty } \ln {y_n} = \ln \left( {\mathop {\lim }\limits_{n \to \infty } {y_n}} \right) = \ln L$ .
Thus, $\ln L = \ln \dfrac{4}{e}$ , i.e., $L = \dfrac{4}{e}$ , whose values is approximately equal to $L = \dfrac{4}{{2.71}} = 1.47$ .
Hence, the value for $\left[ L \right] = 1$ .
Note: Properties of $\ln $ , which are $\ln {a^b} = b\ln a$ and $\ln a - \ln b = \ln \dfrac{a}{b}$ has to be kept in mind.
Since, $\ln e = 1$ as the base for natural log is $e$ , so, we can replace $1$ by $\ln e$ .
Value of $e = 2.718281828459045235602874713527$ , but while solving, we can round it to $100$ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

