
For any $ x\in R $ , minimum value of $ \left| x-1 \right|+\left| 2x-1 \right|+\left| 3x-1 \right|+...+\left| 119x-1 \right| $ is _____. \[\]
Answer
562.8k+ views
Hint: We recall that the definition of absolute value function $ \left| x \right| $ where minimum value occurs at breaking point $ x=0 $ . We see that the given function will have a minimum at one of the breakpoints $ x=\dfrac{1}{m} $ where $ m\in \left\{ 1,2,3,...,119 \right\} $ . We take the sum of the slopes for $ x=\dfrac{1}{m} $ and minimize the sum to get $ m $ . \[\]
Complete step by step answer:
Let us denote the given function as
\[f\left( x \right)=\left| x-1 \right|+\left| 2x-1 \right|+\left| 3x-1 \right|+...+\left| 119x-1 \right|\]
We know that the absolute value function is not differentiable at break points and the break point of $ \left| ax-b \right| $ is $ x=\dfrac{b}{a} $ since $ \left| ax-b \right|=ax-b $ if $ x\ge \dfrac{b}{a} $ and $ \left| ax-b \right|=-\left( ax-b \right) $ if $ x < \dfrac{b}{a} $ .We see in the given function there are 119 absolute value functions $ \left| x-1 \right|,\left| 2x-1 \right|,\left| 3x-1 \right|,...,\left| 119x-1 \right| $ whose break points are $ x=1,x=\dfrac{1}{2},x=\dfrac{1}{3},...,x=\dfrac{1}{119} $ . We see that at $ x=\dfrac{1}{n},n=1,2,3,...118 $ the slope of the function $ f\left( x \right) $ increases by $ 2n $ .
So we have
\[\begin{align}
& f\left( x \right)=x-1+2x-1+...+119x-1\text{ if }x\ge 1 \\
& f\left( x \right)=-\left( x-1 \right)-\left( 2x-1 \right)-...-\left( 119x-1\text{ } \right)\text{ if }x < \dfrac{1}{119} \\
\end{align}\]
So $ f\left( x \right) $ will have negative slope beginning from $ x=\dfrac{1}{119} $ and then will continue decreasing until a point $ x=\dfrac{1}{m} $ where minimum will occur with zero slope until $ x=\dfrac{1}{m+1} $ and then slope of $ f\left( x \right) $ will increase after $ x=\dfrac{1}{m+1} $ . So the function can be defined as
\[f\left( x \right)=1-x+1-2x+....+1-\left( m-1 \right)x+\left( m\cdot \dfrac{1}{m}-1 \right)+\left( m+1 \right)x-1+...+119x-1\]
We see that the slopes of the absolute value terms up to $ x=\dfrac{1}{m} $ are $ 1,2,3,...,m $ and after $ x=\dfrac{1}{m} $ are $ m+1,m+2,...119 $ . So the sum of the slopes of $ f\left( x \right) $ can be given as
\[\begin{align}
& -\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=m+1}^{119}{i} \\
& \Rightarrow -\sum\limits_{i=1}^{m}{i}-\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=m+1}^{119}{i} \\
& \Rightarrow -2\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=1}^{119}{i} \\
& \Rightarrow -2\cdot \dfrac{m\left( m+1 \right)}{2}+\dfrac{119\times 120}{2} \\
& \Rightarrow -{{m}^{2}}-m+7140 \\
\end{align}\]
We need to minimize the above sum of slopes because larger is the sum larger is the value of the function $ f\left( x \right) $ . The minimum of the above quadratic function will occur at zeros which are
\[\begin{align}
& -{{m}^{2}}-m+7140=0 \\
& \Rightarrow {{m}^{2}}+m-7140=0 \\
& \Rightarrow {{m}^{2}}+85m-84m-7140=0 \\
& \Rightarrow \left( m+85 \right)\left( m-84 \right)=0 \\
& \Rightarrow m=84,-85 \\
\end{align}\]
So the slopes $ f\left( x \right) $ will remain the same in the interval $ \left[ \dfrac{1}{84},\dfrac{1}{85} \right] $ . So the value of the function in the interval $ \left[ \dfrac{1}{84},\dfrac{1}{85} \right] $ will be minimum which is given by
\[\begin{align}
& f\left( \dfrac{1}{84} \right)=1-\dfrac{1}{84}+1-2\cdot \dfrac{1}{84}+...+1-83\cdot \dfrac{1}{84}+0+85\cdot \dfrac{1}{84}-1+...+119\cdot \dfrac{1}{84}-1 \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\left( \dfrac{83}{84}+\dfrac{82}{84}+...+\dfrac{1}{84} \right)+\left( \dfrac{1}{84}+\dfrac{2}{84}+...+\dfrac{35}{84} \right) \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\dfrac{1}{84}\left( \dfrac{83\times 84}{2} \right)+\dfrac{1}{84}\left( \dfrac{35\times 36}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\dfrac{83}{2}+\dfrac{1}{12\times 7}\times \dfrac{7\times 5\times 36}{2} \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=41.5+7.5=49 \\
\end{align}\]
So the minimum value is 49. \[\]
Note:
We note that we have frequently used here formula for sum of first $ n $ terms $ 1+2+3...+n=\dfrac{n\left( n+1 \right)}{2} $ . We can also put $ x=85 $ to get the minimum 49. We can alternatively solve using the triangle inequality property $ \left| x-a \right|+\left| x-b \right|\ge \left| x-a+x-b \right| $ to have
\[\left| x-1 \right|+\left| 2x-1 \right|+\left| 3x-1 \right|+...+\left| 119x-1 \right|\ge \left| x-1+2x-1+3x-1+...+119x-1 \right|\]. Since minimum exists all $ x $ ’s have to be cancelled out so we need such $ n $ such that $ 1+2+3...n=\left( n+1 \right)+\left( n+2 \right)...+119 $ . We solve for $ n $ to get $ n=84 $ .
Complete step by step answer:
Let us denote the given function as
\[f\left( x \right)=\left| x-1 \right|+\left| 2x-1 \right|+\left| 3x-1 \right|+...+\left| 119x-1 \right|\]
We know that the absolute value function is not differentiable at break points and the break point of $ \left| ax-b \right| $ is $ x=\dfrac{b}{a} $ since $ \left| ax-b \right|=ax-b $ if $ x\ge \dfrac{b}{a} $ and $ \left| ax-b \right|=-\left( ax-b \right) $ if $ x < \dfrac{b}{a} $ .We see in the given function there are 119 absolute value functions $ \left| x-1 \right|,\left| 2x-1 \right|,\left| 3x-1 \right|,...,\left| 119x-1 \right| $ whose break points are $ x=1,x=\dfrac{1}{2},x=\dfrac{1}{3},...,x=\dfrac{1}{119} $ . We see that at $ x=\dfrac{1}{n},n=1,2,3,...118 $ the slope of the function $ f\left( x \right) $ increases by $ 2n $ .
So we have
\[\begin{align}
& f\left( x \right)=x-1+2x-1+...+119x-1\text{ if }x\ge 1 \\
& f\left( x \right)=-\left( x-1 \right)-\left( 2x-1 \right)-...-\left( 119x-1\text{ } \right)\text{ if }x < \dfrac{1}{119} \\
\end{align}\]
So $ f\left( x \right) $ will have negative slope beginning from $ x=\dfrac{1}{119} $ and then will continue decreasing until a point $ x=\dfrac{1}{m} $ where minimum will occur with zero slope until $ x=\dfrac{1}{m+1} $ and then slope of $ f\left( x \right) $ will increase after $ x=\dfrac{1}{m+1} $ . So the function can be defined as
\[f\left( x \right)=1-x+1-2x+....+1-\left( m-1 \right)x+\left( m\cdot \dfrac{1}{m}-1 \right)+\left( m+1 \right)x-1+...+119x-1\]
We see that the slopes of the absolute value terms up to $ x=\dfrac{1}{m} $ are $ 1,2,3,...,m $ and after $ x=\dfrac{1}{m} $ are $ m+1,m+2,...119 $ . So the sum of the slopes of $ f\left( x \right) $ can be given as
\[\begin{align}
& -\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=m+1}^{119}{i} \\
& \Rightarrow -\sum\limits_{i=1}^{m}{i}-\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=m+1}^{119}{i} \\
& \Rightarrow -2\sum\limits_{i=1}^{m}{i}+\sum\limits_{i=1}^{119}{i} \\
& \Rightarrow -2\cdot \dfrac{m\left( m+1 \right)}{2}+\dfrac{119\times 120}{2} \\
& \Rightarrow -{{m}^{2}}-m+7140 \\
\end{align}\]
We need to minimize the above sum of slopes because larger is the sum larger is the value of the function $ f\left( x \right) $ . The minimum of the above quadratic function will occur at zeros which are
\[\begin{align}
& -{{m}^{2}}-m+7140=0 \\
& \Rightarrow {{m}^{2}}+m-7140=0 \\
& \Rightarrow {{m}^{2}}+85m-84m-7140=0 \\
& \Rightarrow \left( m+85 \right)\left( m-84 \right)=0 \\
& \Rightarrow m=84,-85 \\
\end{align}\]
So the slopes $ f\left( x \right) $ will remain the same in the interval $ \left[ \dfrac{1}{84},\dfrac{1}{85} \right] $ . So the value of the function in the interval $ \left[ \dfrac{1}{84},\dfrac{1}{85} \right] $ will be minimum which is given by
\[\begin{align}
& f\left( \dfrac{1}{84} \right)=1-\dfrac{1}{84}+1-2\cdot \dfrac{1}{84}+...+1-83\cdot \dfrac{1}{84}+0+85\cdot \dfrac{1}{84}-1+...+119\cdot \dfrac{1}{84}-1 \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\left( \dfrac{83}{84}+\dfrac{82}{84}+...+\dfrac{1}{84} \right)+\left( \dfrac{1}{84}+\dfrac{2}{84}+...+\dfrac{35}{84} \right) \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\dfrac{1}{84}\left( \dfrac{83\times 84}{2} \right)+\dfrac{1}{84}\left( \dfrac{35\times 36}{2} \right) \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=\dfrac{83}{2}+\dfrac{1}{12\times 7}\times \dfrac{7\times 5\times 36}{2} \\
& \Rightarrow f\left( \dfrac{1}{84} \right)=41.5+7.5=49 \\
\end{align}\]
So the minimum value is 49. \[\]
Note:
We note that we have frequently used here formula for sum of first $ n $ terms $ 1+2+3...+n=\dfrac{n\left( n+1 \right)}{2} $ . We can also put $ x=85 $ to get the minimum 49. We can alternatively solve using the triangle inequality property $ \left| x-a \right|+\left| x-b \right|\ge \left| x-a+x-b \right| $ to have
\[\left| x-1 \right|+\left| 2x-1 \right|+\left| 3x-1 \right|+...+\left| 119x-1 \right|\ge \left| x-1+2x-1+3x-1+...+119x-1 \right|\]. Since minimum exists all $ x $ ’s have to be cancelled out so we need such $ n $ such that $ 1+2+3...n=\left( n+1 \right)+\left( n+2 \right)...+119 $ . We solve for $ n $ to get $ n=84 $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

