
For any value of $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ , prove that ${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$.
Answer
590.4k+ views
Hint: To solve this problem, we should know the transformation formulae in trigonometry. We know that $\cos x={{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)$ and $1+\sin x={{\left( \sin \left( \dfrac{x}{2} \right)+\cos \left( \dfrac{x}{2} \right) \right)}^{2}}$. Using these two formulae, we can rewrite the L.H.S by cancelling $\sin \left( \dfrac{x}{2} \right)+\cos \left( \dfrac{x}{2} \right)$ . We get the transformed L.H.S as ${{\tan }^{-1}}\left( \dfrac{\cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right)} \right)$. By cancelling $\cos \dfrac{x}{2}$, We get ${{\tan }^{-1}}\left( \dfrac{1-\tan \left( \dfrac{x}{2} \right)}{1+\tan \left( \dfrac{x}{2} \right)} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)$. By checking the range of $\dfrac{\pi }{4}-\dfrac{x}{2}$ , we can cancel ${{\tan }^{-1}}$ and $\tan $ to get the required R.H.S.
Complete step by step answer:
We know the formula for $\cos 2y$ in terms of $\cos y$ and $\sin y$ as
$\cos 2y={{\cos }^{2}}y-{{\sin }^{2}}y\to \left( 1 \right)$.
Let us consider a function $\sin y+\cos y$ and squaring the function, we get
${{\left( \sin y+\cos y \right)}^{2}}={{\sin }^{2}}y+{{\cos }^{2}}y+2\sin y\cos y$
We know that ${{\sin }^{2}}y+{{\cos }^{2}}y=1$ and $2\sin y\cos y=\sin 2y$.
Using them, we get
\[{{\left( \sin y+\cos y \right)}^{2}}=1+\sin 2y\to \left( 2 \right)\]
Substituting $y=\dfrac{x}{2}$ in equations-1 and 2, we get
$\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\to \left( 3 \right)$
\[1+\sin x={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}\to \left( 4 \right)\]
Using the equations-3, 4 in ${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)$, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)$
We know the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$,
Using that in above equation, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\left( \cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right) \right)\times \left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)$
We can cancel $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)$ in numerator and denominator as $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)\ne 0$ in the given range of x. We get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right)} \right)$
Dividing by $\cos \left( \dfrac{x}{2} \right)$ in numerator and denominator, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}}{1+\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}} \right)$
We know that $\dfrac{\sin x}{\cos x}=\tan x$, we can write the above equation as,
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\tan \left( \dfrac{x}{2} \right)}{1+\tan \left( \dfrac{x}{2} \right)} \right)$
We know that $\tan \dfrac{\pi }{4}=1$. We can rewrite the above equation as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \left( \dfrac{x}{2} \right)}{1+\tan \dfrac{\pi }{4}\times \tan \left( \dfrac{x}{2} \right)} \right)$
We know that $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1-\tan A\times \tan B}$, we can write the above equation By taking $A=\dfrac{\pi }{4},B=\dfrac{x}{2}$ as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)\to \left( 5 \right)$
We can write ${{\tan }^{-1}}\left( \tan x \right)=x$ when $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$.
Let us consider $\dfrac{\pi }{4}-\dfrac{x}{2}$,
When $x=-\dfrac{\pi }{2}$, we get $\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}+\dfrac{\pi }{4}=\dfrac{\pi }{2}$
When $x=\dfrac{\pi }{2}$, we get $\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}-\dfrac{\pi }{4}=0$.
For the given range of x in the question which is $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, we can infer that
$\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right)$
As $\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right)$, we can write
${{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$.
We can write equation-5 as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$
$\therefore $For the given range of $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, proved that ${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$.
Note:
Students can make a mistake while using the relation ${{\tan }^{-1}}\left( \tan x \right)=x$. In this question, the values of x are within the range where the formula is valid, but we have to be careful while applying it and we have to check whether x is in the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ or not. If the values of x are outside the range, we should write the corresponding value of angle within the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ which has a value of tan function equal to $\tan x$. Students should check if a term is zero or not in the given range while cancelling it in numerator and denominator, like we did for $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)$.
Complete step by step answer:
We know the formula for $\cos 2y$ in terms of $\cos y$ and $\sin y$ as
$\cos 2y={{\cos }^{2}}y-{{\sin }^{2}}y\to \left( 1 \right)$.
Let us consider a function $\sin y+\cos y$ and squaring the function, we get
${{\left( \sin y+\cos y \right)}^{2}}={{\sin }^{2}}y+{{\cos }^{2}}y+2\sin y\cos y$
We know that ${{\sin }^{2}}y+{{\cos }^{2}}y=1$ and $2\sin y\cos y=\sin 2y$.
Using them, we get
\[{{\left( \sin y+\cos y \right)}^{2}}=1+\sin 2y\to \left( 2 \right)\]
Substituting $y=\dfrac{x}{2}$ in equations-1 and 2, we get
$\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\to \left( 3 \right)$
\[1+\sin x={{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}\to \left( 4 \right)\]
Using the equations-3, 4 in ${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)$, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)$
We know the formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$,
Using that in above equation, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\left( \cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right) \right)\times \left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}{{{\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)}^{2}}} \right)$
We can cancel $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)$ in numerator and denominator as $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)\ne 0$ in the given range of x. We get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\cos \left( \dfrac{x}{2} \right)-\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right)} \right)$
Dividing by $\cos \left( \dfrac{x}{2} \right)$ in numerator and denominator, we get
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}}{1+\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}} \right)$
We know that $\dfrac{\sin x}{\cos x}=\tan x$, we can write the above equation as,
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{1-\tan \left( \dfrac{x}{2} \right)}{1+\tan \left( \dfrac{x}{2} \right)} \right)$
We know that $\tan \dfrac{\pi }{4}=1$. We can rewrite the above equation as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \left( \dfrac{x}{2} \right)}{1+\tan \dfrac{\pi }{4}\times \tan \left( \dfrac{x}{2} \right)} \right)$
We know that $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1-\tan A\times \tan B}$, we can write the above equation By taking $A=\dfrac{\pi }{4},B=\dfrac{x}{2}$ as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)\to \left( 5 \right)$
We can write ${{\tan }^{-1}}\left( \tan x \right)=x$ when $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$.
Let us consider $\dfrac{\pi }{4}-\dfrac{x}{2}$,
When $x=-\dfrac{\pi }{2}$, we get $\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}+\dfrac{\pi }{4}=\dfrac{\pi }{2}$
When $x=\dfrac{\pi }{2}$, we get $\dfrac{\pi }{4}-\dfrac{x}{2}=\dfrac{\pi }{4}-\dfrac{\pi }{4}=0$.
For the given range of x in the question which is $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, we can infer that
$\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right)$
As $\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)\in \left( 0,\dfrac{\pi }{2} \right)$, we can write
${{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$.
We can write equation-5 as
${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$
$\therefore $For the given range of $x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, proved that ${{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2}$.
Note:
Students can make a mistake while using the relation ${{\tan }^{-1}}\left( \tan x \right)=x$. In this question, the values of x are within the range where the formula is valid, but we have to be careful while applying it and we have to check whether x is in the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ or not. If the values of x are outside the range, we should write the corresponding value of angle within the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ which has a value of tan function equal to $\tan x$. Students should check if a term is zero or not in the given range while cancelling it in numerator and denominator, like we did for $\left( \cos \left( \dfrac{x}{2} \right)+\sin \left( \dfrac{x}{2} \right) \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

