
For any two events \[A\] and \[B\] in a sample space
A. \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
B. \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) - {\rm P}(\overline {\rm A} \cap \overline {{\rm B})} \] does not hold
C. \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , if \[{\rm A}\] and \[{\rm B}\] are independent
D. \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}({\rm A}){\rm P}({\rm B})\] , if \[{\rm A}\] and \[{\rm B}\] are disjoint.
Answer
518.7k+ views
Hint: Here, any two events \[A\] and \[B\] in sample space. The sample space of a random experiment is the collection of all possible outcomes. A probability model consists of the sample space and the way to assign probabilities. An event associated with a random experiment is a subset of the sample space. The probability of any outcome is a number between 0 and 1. An event is a set of outcomes of an experiment to which a probability is assigned.
Complete step by step solution:
\[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
We know that, \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A} \cap {\rm B})}}{{{\rm P}(B)}}\] where \[{\rm P}({\rm B}) \ne 0\]
Now,
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
Rearranging it, we get
\[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
By using above values, we have
\[
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})}}{{{\rm P}(B)}} \\
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}(B)}} \;
\]
\[{\rm P}({\rm A} \cup {\rm B}) \leqslant 1\]
Hence, Option(A) is true
Therefore, \[{\rm P}(\overline {\rm A} \cap \overline {\rm B} ) = 1 - {\rm P}({\rm A} \cup B)\] , By apply demorgan’s law into the above equation, we get,
Here, we have
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
By this demorgan’s law, we get
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - 1 + {\rm P}(\overline {\rm A} \cap \overline {\rm B} )\]
Hence, Option(B) is also true.
So we use \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
if \[{\rm A}\] and \[{\rm B}\] are independent, then \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}){\rm P}({\rm B})\]
Thus, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A}){\rm P}({\rm B})\]
Take \[{\rm P}({\rm A})\] out from bracket, we get
\[
{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A})(1 - {\rm P}({\rm B})) + {\rm P}({\rm B}) \\
= (1 - {\rm P}(\overline {\rm A} )){\rm P}(\overline {\rm B} ) + 1 - {\rm P}(\overline {\rm B} ) \;
\]
Therefore, \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , which is option(C)
if \[{\rm A}\] and \[{\rm B}\] are disjoint, then \[{\rm P}({\rm A} \cap {\rm B}) = 0\]
We know, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) = 2 - {\rm P}(\overline {\rm A} ) - {\rm P}(\overline {\rm B} )\] ,
Finally, \[{\rm A}\] , \[{\rm B}\] and \[C\] is the final answer.
So, the correct answer is “OptionA,B and C”.
Note: In probability theory, an event is a set of outcomes of an experiment to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes.
Complete step by step solution:
\[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
We know that, \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A} \cap {\rm B})}}{{{\rm P}(B)}}\] where \[{\rm P}({\rm B}) \ne 0\]
Now,
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
Rearranging it, we get
\[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
By using above values, we have
\[
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})}}{{{\rm P}(B)}} \\
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}(B)}} \;
\]
\[{\rm P}({\rm A} \cup {\rm B}) \leqslant 1\]
Hence, Option(A) is true
Therefore, \[{\rm P}(\overline {\rm A} \cap \overline {\rm B} ) = 1 - {\rm P}({\rm A} \cup B)\] , By apply demorgan’s law into the above equation, we get,
Here, we have
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
By this demorgan’s law, we get
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - 1 + {\rm P}(\overline {\rm A} \cap \overline {\rm B} )\]
Hence, Option(B) is also true.
So we use \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
if \[{\rm A}\] and \[{\rm B}\] are independent, then \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}){\rm P}({\rm B})\]
Thus, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A}){\rm P}({\rm B})\]
Take \[{\rm P}({\rm A})\] out from bracket, we get
\[
{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A})(1 - {\rm P}({\rm B})) + {\rm P}({\rm B}) \\
= (1 - {\rm P}(\overline {\rm A} )){\rm P}(\overline {\rm B} ) + 1 - {\rm P}(\overline {\rm B} ) \;
\]
Therefore, \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , which is option(C)
if \[{\rm A}\] and \[{\rm B}\] are disjoint, then \[{\rm P}({\rm A} \cap {\rm B}) = 0\]
We know, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) = 2 - {\rm P}(\overline {\rm A} ) - {\rm P}(\overline {\rm B} )\] ,
Finally, \[{\rm A}\] , \[{\rm B}\] and \[C\] is the final answer.
So, the correct answer is “OptionA,B and C”.
Note: In probability theory, an event is a set of outcomes of an experiment to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

