
For any two events \[A\] and \[B\] in a sample space
A. \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
B. \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) - {\rm P}(\overline {\rm A} \cap \overline {{\rm B})} \] does not hold
C. \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , if \[{\rm A}\] and \[{\rm B}\] are independent
D. \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}({\rm A}){\rm P}({\rm B})\] , if \[{\rm A}\] and \[{\rm B}\] are disjoint.
Answer
532.8k+ views
Hint: Here, any two events \[A\] and \[B\] in sample space. The sample space of a random experiment is the collection of all possible outcomes. A probability model consists of the sample space and the way to assign probabilities. An event associated with a random experiment is a subset of the sample space. The probability of any outcome is a number between 0 and 1. An event is a set of outcomes of an experiment to which a probability is assigned.
Complete step by step solution:
\[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
We know that, \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A} \cap {\rm B})}}{{{\rm P}(B)}}\] where \[{\rm P}({\rm B}) \ne 0\]
Now,
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
Rearranging it, we get
\[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
By using above values, we have
\[
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})}}{{{\rm P}(B)}} \\
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}(B)}} \;
\]
\[{\rm P}({\rm A} \cup {\rm B}) \leqslant 1\]
Hence, Option(A) is true
Therefore, \[{\rm P}(\overline {\rm A} \cap \overline {\rm B} ) = 1 - {\rm P}({\rm A} \cup B)\] , By apply demorgan’s law into the above equation, we get,
Here, we have
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
By this demorgan’s law, we get
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - 1 + {\rm P}(\overline {\rm A} \cap \overline {\rm B} )\]
Hence, Option(B) is also true.
So we use \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
if \[{\rm A}\] and \[{\rm B}\] are independent, then \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}){\rm P}({\rm B})\]
Thus, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A}){\rm P}({\rm B})\]
Take \[{\rm P}({\rm A})\] out from bracket, we get
\[
{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A})(1 - {\rm P}({\rm B})) + {\rm P}({\rm B}) \\
= (1 - {\rm P}(\overline {\rm A} )){\rm P}(\overline {\rm B} ) + 1 - {\rm P}(\overline {\rm B} ) \;
\]
Therefore, \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , which is option(C)
if \[{\rm A}\] and \[{\rm B}\] are disjoint, then \[{\rm P}({\rm A} \cap {\rm B}) = 0\]
We know, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) = 2 - {\rm P}(\overline {\rm A} ) - {\rm P}(\overline {\rm B} )\] ,
Finally, \[{\rm A}\] , \[{\rm B}\] and \[C\] is the final answer.
So, the correct answer is “OptionA,B and C”.
Note: In probability theory, an event is a set of outcomes of an experiment to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes.
Complete step by step solution:
\[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}({\rm B})}},{\rm P}({\rm B}) \ne 0\] , is always true.
We know that, \[{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A} \cap {\rm B})}}{{{\rm P}(B)}}\] where \[{\rm P}({\rm B}) \ne 0\]
Now,
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
Rearranging it, we get
\[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
By using above values, we have
\[
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) = \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})}}{{{\rm P}(B)}} \\
{\rm P}\left( {\dfrac{{\rm A}}{{\rm B}}} \right) \geqslant \dfrac{{{\rm P}({\rm A}) + {\rm P}({\rm B}) - 1}}{{{\rm P}(B)}} \;
\]
\[{\rm P}({\rm A} \cup {\rm B}) \leqslant 1\]
Hence, Option(A) is true
Therefore, \[{\rm P}(\overline {\rm A} \cap \overline {\rm B} ) = 1 - {\rm P}({\rm A} \cup B)\] , By apply demorgan’s law into the above equation, we get,
Here, we have
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cup {\rm B})\]
By this demorgan’s law, we get
\[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - 1 + {\rm P}(\overline {\rm A} \cap \overline {\rm B} )\]
Hence, Option(B) is also true.
So we use \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A} \cap {\rm B})\]
if \[{\rm A}\] and \[{\rm B}\] are independent, then \[{\rm P}({\rm A} \cap {\rm B}) = {\rm P}({\rm A}){\rm P}({\rm B})\]
Thus, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) - {\rm P}({\rm A}){\rm P}({\rm B})\]
Take \[{\rm P}({\rm A})\] out from bracket, we get
\[
{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A})(1 - {\rm P}({\rm B})) + {\rm P}({\rm B}) \\
= (1 - {\rm P}(\overline {\rm A} )){\rm P}(\overline {\rm B} ) + 1 - {\rm P}(\overline {\rm B} ) \;
\]
Therefore, \[{\rm P}({\rm A} \cup {\rm B}) = 1 - {\rm P}(\overline {\rm A} ){\rm P}(\overline {\rm B} )\] , which is option(C)
if \[{\rm A}\] and \[{\rm B}\] are disjoint, then \[{\rm P}({\rm A} \cap {\rm B}) = 0\]
We know, \[{\rm P}({\rm A} \cup {\rm B}) = {\rm P}({\rm A}) + {\rm P}({\rm B}) = 2 - {\rm P}(\overline {\rm A} ) - {\rm P}(\overline {\rm B} )\] ,
Finally, \[{\rm A}\] , \[{\rm B}\] and \[C\] is the final answer.
So, the correct answer is “OptionA,B and C”.
Note: In probability theory, an event is a set of outcomes of an experiment to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

