
For any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right),\text{ the expression }3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
is,
$\begin{align}
& \text{A) }13-4{{\cos }^{6}}\theta \\
& \text{B) }13-4{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
& \text{B) }13-4{{\cos }^{2}}\theta +6{{\cos }^{4}}\theta \\
& \text{B) }13-4{{\cos }^{2}}\theta +6{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{align}$
Answer
574.5k+ views
Hint: In this problem, we will first express \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\text{ and }{{\left( \sin \theta +\cos \theta \right)}^{2}}\] using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.we will also use \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Complete step by step answer:
The given expression
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\left( \sin \theta -\cos \theta \right)}^{2}} \right)}^{2}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
Now we will use ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( \sin \theta +\cos \theta \right)}^{2}}\] and \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\].
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta \right)}^{2}}+6({{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
& +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \\
\end{align}\]Since, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}+6(1 +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \]
Again by using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}\],
we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3\left( 1-4\sin \theta \cos \theta +4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)+6(1 +2\sin \theta \cos \theta ) \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3-12\sin \theta \cos \theta +12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +12\sin \theta \cos \theta \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +4{{\sin }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{6}}\theta .....(1)\]
Now we will first simplify \[4{{\sin }^{6}}\theta \] and then use in equation (1)
\[4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta \cdot {{\sin }^{4}}\theta \]
Since , \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right)\cdot {{\sin }^{4}}\theta \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{4}}\theta -4{{\cos }^{2}}\theta {{\sin }^{4}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta {{\sin }^{2}}\theta \cdot \]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] we get
\[\Rightarrow 4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right){{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)\cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta .....(2)\]
Using equation (2) in equation (1), we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta \\
& +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \\
\end{align}\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta \left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
we get
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{2}}\theta \right)\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta -{{\cos }^{4}}\theta -{{\cos }^{2}}\theta -{{\cos }^{6}}\theta \right)\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{6}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4-4{{\cos }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =13-4{{\cos }^{6}}\theta \]
So, the correct answer is “Option A”.
Note: In this problem, we can check that we option is correct by substituting the values of theta (option by elimination). Since the given expression is true for any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)\] that is true for any one of the options.
Complete step by step answer:
The given expression
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\left( \sin \theta -\cos \theta \right)}^{2}} \right)}^{2}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
Now we will use ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( \sin \theta +\cos \theta \right)}^{2}}\] and \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\].
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta \right)}^{2}}+6({{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
& +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \\
\end{align}\]Since, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}+6(1 +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \]
Again by using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}\],
we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3\left( 1-4\sin \theta \cos \theta +4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)+6(1 +2\sin \theta \cos \theta ) \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3-12\sin \theta \cos \theta +12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +12\sin \theta \cos \theta \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +4{{\sin }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{6}}\theta .....(1)\]
Now we will first simplify \[4{{\sin }^{6}}\theta \] and then use in equation (1)
\[4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta \cdot {{\sin }^{4}}\theta \]
Since , \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right)\cdot {{\sin }^{4}}\theta \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{4}}\theta -4{{\cos }^{2}}\theta {{\sin }^{4}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta {{\sin }^{2}}\theta \cdot \]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] we get
\[\Rightarrow 4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right){{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)\cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta .....(2)\]
Using equation (2) in equation (1), we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta \\
& +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \\
\end{align}\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta \left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
we get
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{2}}\theta \right)\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta -{{\cos }^{4}}\theta -{{\cos }^{2}}\theta -{{\cos }^{6}}\theta \right)\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{6}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4-4{{\cos }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =13-4{{\cos }^{6}}\theta \]
So, the correct answer is “Option A”.
Note: In this problem, we can check that we option is correct by substituting the values of theta (option by elimination). Since the given expression is true for any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)\] that is true for any one of the options.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

