
For any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right),\text{ the expression }3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
is,
$\begin{align}
& \text{A) }13-4{{\cos }^{6}}\theta \\
& \text{B) }13-4{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
& \text{B) }13-4{{\cos }^{2}}\theta +6{{\cos }^{4}}\theta \\
& \text{B) }13-4{{\cos }^{2}}\theta +6{{\sin }^{2}}\theta {{\cos }^{2}}\theta \\
\end{align}$
Answer
510k+ views
Hint: In this problem, we will first express \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\text{ and }{{\left( \sin \theta +\cos \theta \right)}^{2}}\] using ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.we will also use \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Complete step by step answer:
The given expression
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\left( \sin \theta -\cos \theta \right)}^{2}} \right)}^{2}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
Now we will use ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( \sin \theta +\cos \theta \right)}^{2}}\] and \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\].
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta \right)}^{2}}+6({{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
& +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \\
\end{align}\]Since, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}+6(1 +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \]
Again by using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}\],
we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3\left( 1-4\sin \theta \cos \theta +4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)+6(1 +2\sin \theta \cos \theta ) \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3-12\sin \theta \cos \theta +12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +12\sin \theta \cos \theta \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +4{{\sin }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{6}}\theta .....(1)\]
Now we will first simplify \[4{{\sin }^{6}}\theta \] and then use in equation (1)
\[4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta \cdot {{\sin }^{4}}\theta \]
Since , \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right)\cdot {{\sin }^{4}}\theta \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{4}}\theta -4{{\cos }^{2}}\theta {{\sin }^{4}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta {{\sin }^{2}}\theta \cdot \]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] we get
\[\Rightarrow 4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right){{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)\cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta .....(2)\]
Using equation (2) in equation (1), we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta \\
& +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \\
\end{align}\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta \left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
we get
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{2}}\theta \right)\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta -{{\cos }^{4}}\theta -{{\cos }^{2}}\theta -{{\cos }^{6}}\theta \right)\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{6}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4-4{{\cos }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =13-4{{\cos }^{6}}\theta \]
So, the correct answer is “Option A”.
Note: In this problem, we can check that we option is correct by substituting the values of theta (option by elimination). Since the given expression is true for any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)\] that is true for any one of the options.
Complete step by step answer:
The given expression
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\left( \sin \theta -\cos \theta \right)}^{2}} \right)}^{2}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta \]
Now we will use ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( \sin \theta +\cos \theta \right)}^{2}}\] and \[{{\left( \sin \theta -\cos \theta \right)}^{2}}\].
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta -2\sin \theta \cos \theta \right)}^{2}}+6({{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
& +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \\
\end{align}\]Since, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}+6(1 +2\sin \theta \cos \theta )+4{{\sin }^{6}}\theta \]
Again by using ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ to express \[{{\left( 1-2\sin \theta \cos \theta \right)}^{2}}\],
we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3\left( 1-4\sin \theta \cos \theta +4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)+6(1 +2\sin \theta \cos \theta ) \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3-12\sin \theta \cos \theta +12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +12\sin \theta \cos \theta \\
& \text{ }+4{{\sin }^{6}}\theta \\
\end{align}\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =3+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +6 +4{{\sin }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{6}}\theta .....(1)\]
Now we will first simplify \[4{{\sin }^{6}}\theta \] and then use in equation (1)
\[4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta \cdot {{\sin }^{4}}\theta \]
Since , \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
\[4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right)\cdot {{\sin }^{4}}\theta \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{4}}\theta -4{{\cos }^{2}}\theta {{\sin }^{4}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta {{\sin }^{2}}\theta \cdot \]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \] we get
\[\Rightarrow 4{{\sin }^{6}}\theta =4\left( 1-{{\cos }^{2}}\theta \right){{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta \left( 1-{{\cos }^{2}}\theta \right)\cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta -4{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \cdot \]
\[\Rightarrow 4{{\sin }^{6}}\theta =4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta .....(2)\]
Using equation (2) in equation (1), we get
\[\begin{align}
& 3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+12{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta -8{{\cos }^{2}}\theta {{\sin }^{2}}\theta \\
& +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \\
\end{align}\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta {{\cos }^{2}}\theta +4{{\sin }^{2}}\theta +4{{\cos }^{4}}\theta {{\sin }^{2}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4{{\sin }^{2}}\theta \left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
Again by using \[{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \]
we get
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{2}}\theta \right)\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( {{\cos }^{2}}\theta +1+{{\cos }^{4}}\theta -{{\cos }^{4}}\theta -{{\cos }^{2}}\theta -{{\cos }^{6}}\theta \right)\]\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4\left( 1-{{\cos }^{6}}\theta \right)\]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =9+4-4{{\cos }^{6}}\theta \]
\[3{{\left( \sin \theta -\cos \theta \right)}^{4}}+6{{\left( \sin \theta +\cos \theta \right)}^{2}}+4{{\sin }^{6}}\theta =13-4{{\cos }^{6}}\theta \]
So, the correct answer is “Option A”.
Note: In this problem, we can check that we option is correct by substituting the values of theta (option by elimination). Since the given expression is true for any \[\theta \in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)\] that is true for any one of the options.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
