
For any sets A, B, C using properties of sets, prove that: \[A-\left( B\cap C \right)=\left( A-B \right)\cup \left( A-C \right)\].
Answer
591.6k+ views
Hint: We have to know the different formulas related to sets and we have to know the formula for difference of sets that is \[A-B=A\cap {B}'\]and we have to know the formula \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]. ‘\[\cup \]’ represents union of two or more sets.’ \[\cap \]’ represents the intersection of two sets.
Complete step-by-step answer:
We know that \[A-B=A\cap {B}'\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We also know that \[{{\left( A\cap B \right)}^{\prime }}={A}'\cup {B}'\]and \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]
\[A-\left( B\cap C \right)=A\cap {{\left( B\cap C \right)}^{\prime }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=A\cap \left( {B}'\cup {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
= \[\left( A\cap {B}' \right)\cup \left( A\cap {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\left( A-B \right)\cup \left( A-C \right)\]
Hence proved.
Note: We can find the relation between two sets using the venn diagram. We can derive the relation between two sets used in this problem like the difference of two sets. A venn diagram is a diagram that shows all possible logical relations between finite collection of different sets.
Complete step-by-step answer:
We know that \[A-B=A\cap {B}'\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We also know that \[{{\left( A\cap B \right)}^{\prime }}={A}'\cup {B}'\]and \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]
\[A-\left( B\cap C \right)=A\cap {{\left( B\cap C \right)}^{\prime }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=A\cap \left( {B}'\cup {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
= \[\left( A\cap {B}' \right)\cup \left( A\cap {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\left( A-B \right)\cup \left( A-C \right)\]
Hence proved.
Note: We can find the relation between two sets using the venn diagram. We can derive the relation between two sets used in this problem like the difference of two sets. A venn diagram is a diagram that shows all possible logical relations between finite collection of different sets.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

