Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

For any sets A, B, C using properties of sets, prove that: \[A-\left( B\cap C \right)=\left( A-B \right)\cup \left( A-C \right)\].

Answer
VerifiedVerified
589.8k+ views
Hint: We have to know the different formulas related to sets and we have to know the formula for difference of sets that is \[A-B=A\cap {B}'\]and we have to know the formula \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]. ‘\[\cup \]’ represents union of two or more sets.’ \[\cap \]’ represents the intersection of two sets.

Complete step-by-step answer:
We know that \[A-B=A\cap {B}'\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We also know that \[{{\left( A\cap B \right)}^{\prime }}={A}'\cup {B}'\]and \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]
\[A-\left( B\cap C \right)=A\cap {{\left( B\cap C \right)}^{\prime }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=A\cap \left( {B}'\cup {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
= \[\left( A\cap {B}' \right)\cup \left( A\cap {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\left( A-B \right)\cup \left( A-C \right)\]
Hence proved.

Note: We can find the relation between two sets using the venn diagram. We can derive the relation between two sets used in this problem like the difference of two sets. A venn diagram is a diagram that shows all possible logical relations between finite collection of different sets.