
For any sets A, B, C using properties of sets, prove that: \[A-\left( B\cap C \right)=\left( A-B \right)\cup \left( A-C \right)\].
Answer
589.8k+ views
Hint: We have to know the different formulas related to sets and we have to know the formula for difference of sets that is \[A-B=A\cap {B}'\]and we have to know the formula \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]. ‘\[\cup \]’ represents union of two or more sets.’ \[\cap \]’ represents the intersection of two sets.
Complete step-by-step answer:
We know that \[A-B=A\cap {B}'\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We also know that \[{{\left( A\cap B \right)}^{\prime }}={A}'\cup {B}'\]and \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]
\[A-\left( B\cap C \right)=A\cap {{\left( B\cap C \right)}^{\prime }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=A\cap \left( {B}'\cup {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
= \[\left( A\cap {B}' \right)\cup \left( A\cap {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\left( A-B \right)\cup \left( A-C \right)\]
Hence proved.
Note: We can find the relation between two sets using the venn diagram. We can derive the relation between two sets used in this problem like the difference of two sets. A venn diagram is a diagram that shows all possible logical relations between finite collection of different sets.
Complete step-by-step answer:
We know that \[A-B=A\cap {B}'\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We also know that \[{{\left( A\cap B \right)}^{\prime }}={A}'\cup {B}'\]and \[A\cap \left( B\cup C \right)=(A\cap B)\cup (A\cap C)\]
\[A-\left( B\cap C \right)=A\cap {{\left( B\cap C \right)}^{\prime }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[=A\cap \left( {B}'\cup {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
= \[\left( A\cap {B}' \right)\cup \left( A\cap {C}' \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
\[=\left( A-B \right)\cup \left( A-C \right)\]
Hence proved.
Note: We can find the relation between two sets using the venn diagram. We can derive the relation between two sets used in this problem like the difference of two sets. A venn diagram is a diagram that shows all possible logical relations between finite collection of different sets.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

