
For any sets A, B and C, prove that
$\begin{align}
& [i]\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right) \\
& [ii]\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right) \\
\end{align}$
Answer
595.8k+ views
Hint: Prove the R.H.S. of each statement is equal to the L.H.S. of the statement. Use the fact that $A-B=A\bigcap {{B}^{c}}$. Use distributive laws and associative laws of union and intersection to simplify R.H.S. and hence prove L.H.S. is equal to R.H.S.
Complete step-by-step answer:
[i] We have R.H.S. $=\left( A-C \right)\bigcup \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcup \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets distributes over the union, i.e. $A\bigcap \left( B\bigcup C \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap C \right)$
Hence, we have
R.H.S. $={{C}^{c}}\bigcap \left( A\bigcup B \right)$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=A\bigcup B-C$
Hence, RHS = LHS.
[ii] RHS $=\left( A-C \right)\bigcap \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( {{C}^{C}}\bigcap \left( B\bigcap {{C}^{c}} \right) \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( \left( {{C}^{c}}\bigcap {{C}^{c}} \right)\bigcap B \right)$
We know that $A\bigcap A=A$
Hence, we have
R.H.S. $=A\bigcap \left( {{C}^{c}}\bigcap B \right)=A\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have
R.H.S. $=\left( A\bigcap B \right)\bigcap {{C}^{c}}$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have
R.H.S. $=A\bigcap B-C$
Hence, LHS = RHS
Note: Verification using Venn diagrams:
[i] Diagram of $A\bigcup B$
Complete step-by-step answer:
[i] We have R.H.S. $=\left( A-C \right)\bigcup \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcup \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets distributes over the union, i.e. $A\bigcap \left( B\bigcup C \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap C \right)$
Hence, we have
R.H.S. $={{C}^{c}}\bigcap \left( A\bigcup B \right)$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=A\bigcup B-C$
Hence, RHS = LHS.
[ii] RHS $=\left( A-C \right)\bigcap \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( {{C}^{C}}\bigcap \left( B\bigcap {{C}^{c}} \right) \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( \left( {{C}^{c}}\bigcap {{C}^{c}} \right)\bigcap B \right)$
We know that $A\bigcap A=A$
Hence, we have
R.H.S. $=A\bigcap \left( {{C}^{c}}\bigcap B \right)=A\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have
R.H.S. $=\left( A\bigcap B \right)\bigcap {{C}^{c}}$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have
R.H.S. $=A\bigcap B-C$
Hence, LHS = RHS
Note: Verification using Venn diagrams:
[i] Diagram of $A\bigcup B$
Diagram of $A\bigcup B-C$
Diagram of $A-C$
Diagram of $B-C$
Diagram of $\left( A-C \right)\bigcup \left( B-C \right)$
Hence from Venn diagrams, it is verified that $\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right)$
Similarly, it can be verified from Venn diagrams that $\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right)$
Similarly, it can be verified from Venn diagrams that $\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right)$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

