
For any sets A, B and C, prove that
$\begin{align}
& [i]\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right) \\
& [ii]\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right) \\
\end{align}$
Answer
609.9k+ views
Hint: Prove the R.H.S. of each statement is equal to the L.H.S. of the statement. Use the fact that $A-B=A\bigcap {{B}^{c}}$. Use distributive laws and associative laws of union and intersection to simplify R.H.S. and hence prove L.H.S. is equal to R.H.S.
Complete step-by-step answer:
[i] We have R.H.S. $=\left( A-C \right)\bigcup \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcup \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets distributes over the union, i.e. $A\bigcap \left( B\bigcup C \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap C \right)$
Hence, we have
R.H.S. $={{C}^{c}}\bigcap \left( A\bigcup B \right)$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=A\bigcup B-C$
Hence, RHS = LHS.
[ii] RHS $=\left( A-C \right)\bigcap \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( {{C}^{C}}\bigcap \left( B\bigcap {{C}^{c}} \right) \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( \left( {{C}^{c}}\bigcap {{C}^{c}} \right)\bigcap B \right)$
We know that $A\bigcap A=A$
Hence, we have
R.H.S. $=A\bigcap \left( {{C}^{c}}\bigcap B \right)=A\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have
R.H.S. $=\left( A\bigcap B \right)\bigcap {{C}^{c}}$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have
R.H.S. $=A\bigcap B-C$
Hence, LHS = RHS
Note: Verification using Venn diagrams:
[i] Diagram of $A\bigcup B$
Complete step-by-step answer:
[i] We have R.H.S. $=\left( A-C \right)\bigcup \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcup \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets distributes over the union, i.e. $A\bigcap \left( B\bigcup C \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap C \right)$
Hence, we have
R.H.S. $={{C}^{c}}\bigcap \left( A\bigcup B \right)$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=A\bigcup B-C$
Hence, RHS = LHS.
[ii] RHS $=\left( A-C \right)\bigcap \left( B-C \right)$
We know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have R.H.S. $=\left( A\bigcap {{C}^{c}} \right)\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( {{C}^{C}}\bigcap \left( B\bigcap {{C}^{c}} \right) \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have R.H.S. $=A\bigcap \left( \left( {{C}^{c}}\bigcap {{C}^{c}} \right)\bigcap B \right)$
We know that $A\bigcap A=A$
Hence, we have
R.H.S. $=A\bigcap \left( {{C}^{c}}\bigcap B \right)=A\bigcap \left( B\bigcap {{C}^{c}} \right)$
We know that the intersection of two sets is associative, i.e. $A\bigcap \left( B\bigcap C \right)=\left( A\bigcap B \right)\bigcap C$
Hence, we have
R.H.S. $=\left( A\bigcap B \right)\bigcap {{C}^{c}}$
Now, we know that $A-B=A\bigcap {{B}^{c}}$
Hence, we have
R.H.S. $=A\bigcap B-C$
Hence, LHS = RHS
Note: Verification using Venn diagrams:
[i] Diagram of $A\bigcup B$
Diagram of $A\bigcup B-C$
Diagram of $A-C$
Diagram of $B-C$
Diagram of $\left( A-C \right)\bigcup \left( B-C \right)$
Hence from Venn diagrams, it is verified that $\left( A\bigcup B \right)-C=\left( A-C \right)\bigcup \left( B-C \right)$
Similarly, it can be verified from Venn diagrams that $\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right)$
Similarly, it can be verified from Venn diagrams that $\left( A\bigcap B \right)-C=\left( A-C \right)\bigcap \left( B-C \right)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

