
For any positive integers m, n (with $n\ge m$), let $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)={}^{n}{{C}_{m}}$. Prove that $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$?
Answer
564.6k+ views
Hint: We start solving the problem by assuming the value of L.H.S as x. We then use the property that for any positive integer ‘a’, we have ${}^{a}{{C}_{a}}=1$ for ${}^{m}{{C}_{m}}$ and replace it with ${}^{m+1}{{C}_{m+1}}$. We then use the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ for next consecutive terms from the right to left continuously. After applying the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ to all the terms present in the L.H.S (Left Hand Side), we get the required result.
Complete step-by-step solution
According to the problem, it is given that $\left( \begin{align}
& n \\
& m \\
\end{align} \right)={}^{n}{{C}_{m}}$ for any positive integers m, n (with $n\ge m$). We need to prove $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
Let us consider L.H.S (Left Hand Side) and try to prove that it is equal to R.H.S (Right Hand Side).
Let us assume $x=\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}}$ ---(1).
We know that for any positive integer ‘a’, we have ${}^{a}{{C}_{a}}=1$. Using this property, we get ${}^{m}{{C}_{m}}={}^{m+1}{{C}_{m+1}}=1$. Let us use this result in equation (1).
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+1$ ---(2).
Let us replace ‘1’ with ${}^{m+1}{{C}_{m+1}}$ in equation (2) as we have ${}^{m+1}{{C}_{m+1}}=1$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m+1}{{C}_{m+1}}$ ---(3).
We know that ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$. Let us use this result in equation (3).
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+2}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m+1}}$.
This trend continues up to ${}^{n-2}{{C}_{m}}$ y using the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$which makes the sum of remaining terms is equal to ${}^{n-2}{{C}_{m+1}}$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+{}^{n-2}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-1}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n+1}{{C}_{m+1}}$.
So, we have found that ${}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}}={}^{n+1}{{C}_{m+1}}$.
This tells us that we have proved $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
Note: We should not assume ${}^{n+1}{{C}_{r}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ as it is wrong and is the most common mistake many people commit. We should know that in a combination ${}^{a}{{C}_{b}}$, ‘a’ and ‘b’ must be a whole number and $a\ge b$ otherwise, the given problem is wrong. Whenever we get this type of problems, we try to make use of the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ at the required places. If we are given the absolute integer values for ‘m’ and ‘n’, we could have got the result in an integer.
Complete step-by-step solution
According to the problem, it is given that $\left( \begin{align}
& n \\
& m \\
\end{align} \right)={}^{n}{{C}_{m}}$ for any positive integers m, n (with $n\ge m$). We need to prove $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
Let us consider L.H.S (Left Hand Side) and try to prove that it is equal to R.H.S (Right Hand Side).
Let us assume $x=\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}}$ ---(1).
We know that for any positive integer ‘a’, we have ${}^{a}{{C}_{a}}=1$. Using this property, we get ${}^{m}{{C}_{m}}={}^{m+1}{{C}_{m+1}}=1$. Let us use this result in equation (1).
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+1$ ---(2).
Let us replace ‘1’ with ${}^{m+1}{{C}_{m+1}}$ in equation (2) as we have ${}^{m+1}{{C}_{m+1}}=1$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m+1}{{C}_{m+1}}$ ---(3).
We know that ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$. Let us use this result in equation (3).
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+2}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m+1}}$.
This trend continues up to ${}^{n-2}{{C}_{m}}$ y using the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$which makes the sum of remaining terms is equal to ${}^{n-2}{{C}_{m+1}}$.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+{}^{n-2}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-1}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n}{{C}_{m}}+{}^{n}{{C}_{m+1}}$.
Let us use the result ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ again.
$\Rightarrow x={}^{n+1}{{C}_{m+1}}$.
So, we have found that ${}^{n}{{C}_{m}}+{}^{n-1}{{C}_{m}}+{}^{n-2}{{C}_{m}}+......+{}^{m+2}{{C}_{m}}+{}^{m+1}{{C}_{m}}+{}^{m}{{C}_{m}}={}^{n+1}{{C}_{m+1}}$.
This tells us that we have proved $\left( \begin{matrix}
n \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-1 \\
m \\
\end{matrix} \right)+\left( \begin{matrix}
n-2 \\
m \\
\end{matrix} \right)+......+\left( \begin{matrix}
m \\
m \\
\end{matrix} \right)=\left( \begin{matrix}
n+1 \\
m+1 \\
\end{matrix} \right)$.
Note: We should not assume ${}^{n+1}{{C}_{r}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ as it is wrong and is the most common mistake many people commit. We should know that in a combination ${}^{a}{{C}_{b}}$, ‘a’ and ‘b’ must be a whole number and $a\ge b$ otherwise, the given problem is wrong. Whenever we get this type of problems, we try to make use of the property ${}^{n}{{C}_{r+1}}+{}^{n}{{C}_{r}}={}^{n+1}{{C}_{r+1}}$ at the required places. If we are given the absolute integer values for ‘m’ and ‘n’, we could have got the result in an integer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

