
For any natural number m, \[{{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx\] where \[x>0\] equals;
A. \[\dfrac{{{\left( 7{{x}^{7m}}+2{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{m+1}{m}}}}{14\left( m+1 \right)}+C\]
B. \[\dfrac{{{\left( 2{{x}^{7m}}+14{{x}^{2m}}+7{{x}^{m}} \right)}^{\dfrac{m+1}{m}}}}{14\left( m+1 \right)}+C\]
C. \[\dfrac{{{\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{m+1}{m}}}}{14\left( m+1 \right)}+C\]
D. \[\dfrac{{{\left( 7{{x}^{7m}}+2{{x}^{2m}}+{{x}^{m}} \right)}^{\dfrac{m+1}{m}}}}{14\left( m+1 \right)}+C\]
Answer
542.4k+ views
Hint: In order to integrate the given expression, first we need to rewrite the given expression as \[{{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( \left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)\cdot \dfrac{{{x}^{m}}}{{{x}^{m}}} \right)}}^{\dfrac{1}{m}}}dx\] . Then applying the laws of exponents and power i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\] , we will simplifying the expression. Later to integrate the given expression, we need to substitute \[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\] and then differentiating it with respect to ‘x’ and substituting the values and integrating by applying the rules of integration. In this way we will get the required answer.
Formula used:
If ‘a’ is the positive rational number and ‘m’ and ‘n’ are the given rational exponent either positive exponent or negative exponent, then
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
\[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
Complete step-by-step answer:
We have given that,
\[{{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx\] , where \[x>0\] and ‘m’ is any natural number.
Let I be the given integral.
Therefore,
\[\Rightarrow I={{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx\]
It can be rewritten as,
\[\Rightarrow I={{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( \left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)\cdot \dfrac{{{x}^{m}}}{{{x}^{m}}} \right)}}^{\dfrac{1}{m}}}dx\]
Simplifying the above, we will get
Using the laws of exponents i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
\[\Rightarrow I={{\int{\left( {{x}^{7m-1}}+{{x}^{2m-1}}+{{x}^{m-1}} \right)\left( \left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right) \right)}}^{\dfrac{1}{m}}}dx\]
Now,
Substituting the \[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
We have,
\[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
Differentiating it with respect to ‘x’,
\[\left( 14m{{x}^{7m-1}}+14m{{x}^{2m-1}}+14m{{x}^{m-1}} \right)dx=dt\]
Or,
\[\left( {{x}^{7m-1}}+{{x}^{2m-1}}+{{x}^{m-1}} \right)dx=\dfrac{dt}{14m}\]
Substituting this value in the given above integral,
We will get,
\[\Rightarrow I=\dfrac{1}{14m}\int{{{t}^{\dfrac{1}{m}}}dt}\]
Applying the rules of integration;
\[\Rightarrow I=\dfrac{1}{14m}\int{{{t}^{\dfrac{1}{m}}}dt}=\dfrac{{{t}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Undo the substitution i.e. \[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
\[\Rightarrow I=\dfrac{{{\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Therefore,
\[\Rightarrow {{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx=\dfrac{{{\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Hence, the option (c ) is the correct answer.
So, the correct answer is “Option C”.
Note: While solving these types of questions, students should remember all the laws of exponents and powers as then we will be able to solve the question easily. Students need to know that the integration by substitution also known as u-substitution or change of variables, is a method which is used for evaluating integrals or anti-derivatives. Students need to do the calculation part very carefully to avoid making any type of error.
Formula used:
If ‘a’ is the positive rational number and ‘m’ and ‘n’ are the given rational exponent either positive exponent or negative exponent, then
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
\[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
Complete step-by-step answer:
We have given that,
\[{{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx\] , where \[x>0\] and ‘m’ is any natural number.
Let I be the given integral.
Therefore,
\[\Rightarrow I={{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx\]
It can be rewritten as,
\[\Rightarrow I={{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( \left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)\cdot \dfrac{{{x}^{m}}}{{{x}^{m}}} \right)}}^{\dfrac{1}{m}}}dx\]
Simplifying the above, we will get
Using the laws of exponents i.e. \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\] and \[\dfrac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]
\[\Rightarrow I={{\int{\left( {{x}^{7m-1}}+{{x}^{2m-1}}+{{x}^{m-1}} \right)\left( \left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right) \right)}}^{\dfrac{1}{m}}}dx\]
Now,
Substituting the \[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
We have,
\[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
Differentiating it with respect to ‘x’,
\[\left( 14m{{x}^{7m-1}}+14m{{x}^{2m-1}}+14m{{x}^{m-1}} \right)dx=dt\]
Or,
\[\left( {{x}^{7m-1}}+{{x}^{2m-1}}+{{x}^{m-1}} \right)dx=\dfrac{dt}{14m}\]
Substituting this value in the given above integral,
We will get,
\[\Rightarrow I=\dfrac{1}{14m}\int{{{t}^{\dfrac{1}{m}}}dt}\]
Applying the rules of integration;
\[\Rightarrow I=\dfrac{1}{14m}\int{{{t}^{\dfrac{1}{m}}}dt}=\dfrac{{{t}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Undo the substitution i.e. \[\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)=t\]
\[\Rightarrow I=\dfrac{{{\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Therefore,
\[\Rightarrow {{\int{\left( {{x}^{7m}}+{{x}^{2m}}+{{x}^{m}} \right)\left( 2{{x}^{6m}}+7{{x}^{m}}+14 \right)}}^{\dfrac{1}{m}}}dx=\dfrac{{{\left( 2{{x}^{7m}}+7{{x}^{2m}}+14{{x}^{m}} \right)}^{\dfrac{1}{m}+1}}}{14\left( m+1 \right)}+C\]
Hence, the option (c ) is the correct answer.
So, the correct answer is “Option C”.
Note: While solving these types of questions, students should remember all the laws of exponents and powers as then we will be able to solve the question easily. Students need to know that the integration by substitution also known as u-substitution or change of variables, is a method which is used for evaluating integrals or anti-derivatives. Students need to do the calculation part very carefully to avoid making any type of error.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

