
For any \[a,b,x,y > 0\], prove that if: \[\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}}{{{b^3} - 3{a^2}b}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\], then \[\alpha = - ax + by,\beta = bx + ay\].
Answer
569.1k+ views
Hint:
Here, we will simplify the equation and then solve it by using the basic trigonometric function. Then by comparing the left hand side and right hand side of the equation we will get the value of \[\alpha ,\beta \].
Complete step by step solution:
Given equation is \[\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}}{{{b^3} - 3{a^2}b}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\].
First, we will divide the numerator and denominator of the first term of the LHS of the equation by \[{b^3}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3a{b^2} - {a^3}}}{{{b^3}}}}}{{\dfrac{{{b^3} - 3{a^2}b}}{{{b^3}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will divide the numerator and denominator of the second term of the LHS of the equation by \[{y^3}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3x{y^2} - {x^3}}}{{{y^3}}}}}{{\dfrac{{{y^3} - 3{x^2}y}}{{{y^3}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{x}{y} - \dfrac{{{x^3}}}{{{y^3}}}}}{{1 - 3\dfrac{{{x^2}}}{{{y^2}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will let \[\dfrac{a}{b} = \tan \theta \] and \[\dfrac{x}{y} = \tan \phi \] also we get \[\theta = {\tan ^{ - 1}}\dfrac{a}{b}\] and \[\phi = {\tan ^{ - 1}}\dfrac{x}{y}\]. Therefore, by putting this value in the above equation we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \phi - {{\tan }^3}\phi }}{{1 - 3{{\tan }^2}\phi }}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
We know that the value of the \[\tan 3\theta \] is \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\theta } \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\phi } \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now the inverse function term will cancel out with the normal function, we get
\[ \Rightarrow \dfrac{2}{3} \times 3\theta + \dfrac{2}{3} \times 3\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\theta + 2\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will put the value of \[\theta ,\phi \] in the above equation, we get
\[ \Rightarrow 2{\tan ^{ - 1}}\dfrac{a}{b} + 2{\tan ^{ - 1}}\dfrac{x}{y} = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{a}{b} + {{\tan }^{ - 1}}\dfrac{x}{y}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
We know the formula of the \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] which is equals to \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}\], we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{a}{b} + \dfrac{x}{y}}}{{1 - \dfrac{a}{b}\dfrac{x}{y}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will solve and simplify this equation, we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{ay + bx}}{{by}}}}{{\dfrac{{by - ax}}{{by}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will simplify the RHS of the equation. We will divide the numerator and denominator of the RHS of the equation by \[{\alpha ^2}\], we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{\dfrac{{2\alpha \beta }}{{{\alpha ^2}}}}}{{\dfrac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2}}}}} = {\tan ^{ - 1}}\dfrac{{2\dfrac{\beta }{\alpha }}}{{1 - \dfrac{{{\beta ^2}}}{{{\alpha ^2}}}}}\]
We know that the formula of \[2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}\]. Therefore, by comparing the RHS of the equation with this formula we get
\[ \Rightarrow 2{\tan ^{ - 1}}\dfrac{{ay + bx}}{{by - ax}} = 2{\tan ^{ - 1}}\dfrac{\beta }{\alpha }\]
Now by simply comparing the LHS and RHS of the equation we get the value of \[\alpha ,\beta \], we get
\[\alpha = - ax + by\] and \[\beta = bx + ay\]
Hence, proved.
Note:
For solving this question, we need to know different trigonometric identities and formulas. If we know the trigonometric identities then we will be able to understand what we need to do such that the given expression is converted into one of the identities. Trigonometric identities are derived from six basic trigonometric ratios and can be only used in an equation or expression where trigonometric function is involved.
Here, we will simplify the equation and then solve it by using the basic trigonometric function. Then by comparing the left hand side and right hand side of the equation we will get the value of \[\alpha ,\beta \].
Complete step by step solution:
Given equation is \[\dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3a{b^2} - {a^3}}}{{{b^3} - 3{a^2}b}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\].
First, we will divide the numerator and denominator of the first term of the LHS of the equation by \[{b^3}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3a{b^2} - {a^3}}}{{{b^3}}}}}{{\dfrac{{{b^3} - 3{a^2}b}}{{{b^3}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3x{y^2} - {x^3}}}{{{y^3} - 3{x^2}y}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will divide the numerator and denominator of the second term of the LHS of the equation by \[{y^3}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3x{y^2} - {x^3}}}{{{y^3}}}}}{{\dfrac{{{y^3} - 3{x^2}y}}{{{y^3}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{a}{b} - \dfrac{{{a^3}}}{{{b^3}}}}}{{1 - 3\dfrac{{{a^2}}}{{{b^2}}}}}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\dfrac{x}{y} - \dfrac{{{x^3}}}{{{y^3}}}}}{{1 - 3\dfrac{{{x^2}}}{{{y^2}}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will let \[\dfrac{a}{b} = \tan \theta \] and \[\dfrac{x}{y} = \tan \phi \] also we get \[\theta = {\tan ^{ - 1}}\dfrac{a}{b}\] and \[\phi = {\tan ^{ - 1}}\dfrac{x}{y}\]. Therefore, by putting this value in the above equation we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\dfrac{{3\tan \phi - {{\tan }^3}\phi }}{{1 - 3{{\tan }^2}\phi }}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
We know that the value of the \[\tan 3\theta \] is \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]. Therefore, we get
\[ \Rightarrow \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\theta } \right) + \dfrac{2}{3}{\tan ^{ - 1}}\left( {\tan 3\phi } \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now the inverse function term will cancel out with the normal function, we get
\[ \Rightarrow \dfrac{2}{3} \times 3\theta + \dfrac{2}{3} \times 3\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\theta + 2\phi = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will put the value of \[\theta ,\phi \] in the above equation, we get
\[ \Rightarrow 2{\tan ^{ - 1}}\dfrac{a}{b} + 2{\tan ^{ - 1}}\dfrac{x}{y} = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{a}{b} + {{\tan }^{ - 1}}\dfrac{x}{y}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
We know the formula of the \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] which is equals to \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\dfrac{{A + B}}{{1 - AB}}\], we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{a}{b} + \dfrac{x}{y}}}{{1 - \dfrac{a}{b}\dfrac{x}{y}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will solve and simplify this equation, we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{\dfrac{{ay + bx}}{{by}}}}{{\dfrac{{by - ax}}{{by}}}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{2\alpha \beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we will simplify the RHS of the equation. We will divide the numerator and denominator of the RHS of the equation by \[{\alpha ^2}\], we get
\[ \Rightarrow 2\left( {{{\tan }^{ - 1}}\dfrac{{ay + bx}}{{by - ax}}} \right) = {\tan ^{ - 1}}\dfrac{{\dfrac{{2\alpha \beta }}{{{\alpha ^2}}}}}{{\dfrac{{{\alpha ^2} - {\beta ^2}}}{{{\alpha ^2}}}}} = {\tan ^{ - 1}}\dfrac{{2\dfrac{\beta }{\alpha }}}{{1 - \dfrac{{{\beta ^2}}}{{{\alpha ^2}}}}}\]
We know that the formula of \[2{\tan ^{ - 1}}A = {\tan ^{ - 1}}\dfrac{{2A}}{{1 - {A^2}}}\]. Therefore, by comparing the RHS of the equation with this formula we get
\[ \Rightarrow 2{\tan ^{ - 1}}\dfrac{{ay + bx}}{{by - ax}} = 2{\tan ^{ - 1}}\dfrac{\beta }{\alpha }\]
Now by simply comparing the LHS and RHS of the equation we get the value of \[\alpha ,\beta \], we get
\[\alpha = - ax + by\] and \[\beta = bx + ay\]
Hence, proved.
Note:
For solving this question, we need to know different trigonometric identities and formulas. If we know the trigonometric identities then we will be able to understand what we need to do such that the given expression is converted into one of the identities. Trigonometric identities are derived from six basic trigonometric ratios and can be only used in an equation or expression where trigonometric function is involved.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

