
For an AP, $\dfrac{{{S}_{kn}}}{{{S}_{n}}}$ is independent of n. The value of $\dfrac{d}{a}$ for this AP is
a) 1
b) 2
c) 3
d) 4
Answer
577.5k+ views
Hint: Let us assume that we have the following Arithmetic Progression (AP) series:
$a,a+d,a+2d,a+3d,........,a+\left( n-1 \right)d$ , where a is first term, d is common difference and n is number of terms. Since, sum of n terms of an AP is given as:${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$, us the formula to find ${{S}_{n}}$ and ${{S}_{kn}}$ and then use the values to get a ratio between them in terms of d and a.
Complete step by step answer:
Since, we have an Arithmetic Progression (AP) series as: $a,a+d,a+2d,a+3d,........,a+\left( n-1 \right)d$
So, the sum of n terms of the AP is given as:
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]......(1)$
Similarly, for $kn$ terms, we can write:
${{S}_{kn}}=\dfrac{kn}{2}\left[ 2a+\left( kn-1 \right)d \right]......(2)$
Now, we need to find $\dfrac{{{S}_{kn}}}{{{S}_{n}}}$.
So, divide equation (2) by equation (1), we get:
$\dfrac{{{S}_{kn}}}{{{S}_{n}}}=\dfrac{\dfrac{kn}{2}\left[ 2a+\left( kn-1 \right)d \right]}{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}.......(3)$
Now, by simplifying equation (3), we get:
$\dfrac{{{S}_{kn}}}{{{S}_{n}}}=\dfrac{k\left[ 2a+\left( kn-1 \right)d \right]}{\left[ 2a+\left( n-1 \right)d \right]}......(4)$
Let us assume that $\dfrac{{{S}_{kn}}}{{{S}_{n}}}=x$
So, we can write equation (4) as:
$x=\dfrac{k\left[ 2a+\left( kn-1 \right)d \right]}{\left[ 2a+\left( n-1 \right)d \right]}......(5)$
Now, simplify equation (5), we get:
$\begin{align}
& \Rightarrow x\left[ 2a+\left( n-1 \right)d \right]=k\left[ 2a+\left( kn-1 \right)d \right] \\
& \Rightarrow 2xa+xnd-xd=2ka+{{k}^{2}}nd-kd \\
& \Rightarrow 2ak-2ax+xd-kd+\left( {{k}^{2}}d-xd \right)n=0......(6) \\
\end{align}$
So, we get:
Either $\left( {{k}^{2}}d-xd \right)=0......(7)$
Or $2ak-2ax+xd-kd=0......(8)$
From equation (7), we can write:
$\begin{align}
& \Rightarrow {{k}^{2}}d-xd=0 \\
& \Rightarrow {{k}^{2}}d=xd \\
& \Rightarrow {{k}^{2}}=x......(9) \\
\end{align}$
Now, substitute equation (9) in equation (8), we get:
$\begin{align}
& \Rightarrow 2ak-2ax+xd-kd=0 \\
& \Rightarrow 2ak-2a{{k}^{2}}+{{k}^{2}}d-kd=0.....(10) \\
\end{align}$
Now, get all the terms of “a” on one side and terms of “d” on other side, we get:
$\begin{align}
& \Rightarrow 2ak-2a{{k}^{2}}=-{{k}^{2}}d+kd \\
& \Rightarrow 2ak\left( 1-k \right)=-kd\left( k-1 \right) \\
& \Rightarrow 2ak\left( 1-k \right)=kd\left( 1-k \right) \\
& \Rightarrow 2a=d......(11) \\
\end{align}$
Now, to get a ratio between d and a, divide equation (11) by a.
We get:
$\dfrac{d}{a}=2$
So, the correct answer is “Option B”.
Note: The sum of n terms of an AP is given as ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$.
This is deduced as follows:
Sum of n terms of an AP ${{S}_{n}}=\dfrac{n}{2}\left[ \text{first term + last term} \right]$
Since, first term of AP is a, and last term of AP is ${{a}_{n}}=a+\left( n-1 \right)d$
So, we can write sum of n terms of AP as:
$\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ a+a+\left( n-1 \right)d \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right] \\
\end{align}$
$a,a+d,a+2d,a+3d,........,a+\left( n-1 \right)d$ , where a is first term, d is common difference and n is number of terms. Since, sum of n terms of an AP is given as:${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$, us the formula to find ${{S}_{n}}$ and ${{S}_{kn}}$ and then use the values to get a ratio between them in terms of d and a.
Complete step by step answer:
Since, we have an Arithmetic Progression (AP) series as: $a,a+d,a+2d,a+3d,........,a+\left( n-1 \right)d$
So, the sum of n terms of the AP is given as:
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]......(1)$
Similarly, for $kn$ terms, we can write:
${{S}_{kn}}=\dfrac{kn}{2}\left[ 2a+\left( kn-1 \right)d \right]......(2)$
Now, we need to find $\dfrac{{{S}_{kn}}}{{{S}_{n}}}$.
So, divide equation (2) by equation (1), we get:
$\dfrac{{{S}_{kn}}}{{{S}_{n}}}=\dfrac{\dfrac{kn}{2}\left[ 2a+\left( kn-1 \right)d \right]}{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}.......(3)$
Now, by simplifying equation (3), we get:
$\dfrac{{{S}_{kn}}}{{{S}_{n}}}=\dfrac{k\left[ 2a+\left( kn-1 \right)d \right]}{\left[ 2a+\left( n-1 \right)d \right]}......(4)$
Let us assume that $\dfrac{{{S}_{kn}}}{{{S}_{n}}}=x$
So, we can write equation (4) as:
$x=\dfrac{k\left[ 2a+\left( kn-1 \right)d \right]}{\left[ 2a+\left( n-1 \right)d \right]}......(5)$
Now, simplify equation (5), we get:
$\begin{align}
& \Rightarrow x\left[ 2a+\left( n-1 \right)d \right]=k\left[ 2a+\left( kn-1 \right)d \right] \\
& \Rightarrow 2xa+xnd-xd=2ka+{{k}^{2}}nd-kd \\
& \Rightarrow 2ak-2ax+xd-kd+\left( {{k}^{2}}d-xd \right)n=0......(6) \\
\end{align}$
So, we get:
Either $\left( {{k}^{2}}d-xd \right)=0......(7)$
Or $2ak-2ax+xd-kd=0......(8)$
From equation (7), we can write:
$\begin{align}
& \Rightarrow {{k}^{2}}d-xd=0 \\
& \Rightarrow {{k}^{2}}d=xd \\
& \Rightarrow {{k}^{2}}=x......(9) \\
\end{align}$
Now, substitute equation (9) in equation (8), we get:
$\begin{align}
& \Rightarrow 2ak-2ax+xd-kd=0 \\
& \Rightarrow 2ak-2a{{k}^{2}}+{{k}^{2}}d-kd=0.....(10) \\
\end{align}$
Now, get all the terms of “a” on one side and terms of “d” on other side, we get:
$\begin{align}
& \Rightarrow 2ak-2a{{k}^{2}}=-{{k}^{2}}d+kd \\
& \Rightarrow 2ak\left( 1-k \right)=-kd\left( k-1 \right) \\
& \Rightarrow 2ak\left( 1-k \right)=kd\left( 1-k \right) \\
& \Rightarrow 2a=d......(11) \\
\end{align}$
Now, to get a ratio between d and a, divide equation (11) by a.
We get:
$\dfrac{d}{a}=2$
So, the correct answer is “Option B”.
Note: The sum of n terms of an AP is given as ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$.
This is deduced as follows:
Sum of n terms of an AP ${{S}_{n}}=\dfrac{n}{2}\left[ \text{first term + last term} \right]$
Since, first term of AP is a, and last term of AP is ${{a}_{n}}=a+\left( n-1 \right)d$
So, we can write sum of n terms of AP as:
$\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ a+a+\left( n-1 \right)d \right] \\
& \Rightarrow {{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right] \\
\end{align}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

