
For all real $x$, the minimum value of $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ is:
Answer
618k+ views
Hint: Here, to find the minimum value of the function, $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ , first find $f'(x)$ and then substitute it to zero. i.e. put $f'(x)=0$ to find the value of $x$, and then substitute that value in$\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$, to obtain the minimum value. So, to find $f'(x)$ we have to use the quotient rule:
Complete step-by-step answer:
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{u'v-uv'}{{{v}^{2}}}$
Here, for all real $x$, we have to find the minimum value of $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$.
Let us consider,
$f(x)=\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}\text{ }.....\text{ (1)}$
Now, to find the minimum value, we have to find the value of $x$ when $f'(x)=0$.
First, let us calculate $f'(x)$.
$f'(x)=\dfrac{d}{dx}\left( \dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}} \right)$
Here, $f(x)$ is of the form $\dfrac{u}{v}$. Therefore to find $f'(x)$ we have to apply the quotient rule. The quotient rule is given by:
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{u'v-uv'}{{{v}^{2}}}$
So, from equation (1) we have $u=1-x+{{x}^{2}}$ and $v=1+x+{{x}^{2}}$.
By applying the quotient rule in equation (1) we get:
$\Rightarrow$ $f'(x)=\dfrac{\dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)\left( 1+x+{{x}^{2}} \right)-\left( 1-x+{{x}^{2}} \right)\dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}\text{ }.....\text{ (2)}$
Now, let us find:
$\begin{align}
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}}
\right)=\dfrac{d}{dx}(1)+\dfrac{d}{dx}(-x)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=\dfrac{d}{dx}(1)-\dfrac{d}{dx}(x)+\dfrac{d}{dx}\left(
{{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=0-1+2x \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=-1+2x\text{ }.......\text{ (3)} \\
\end{align}$
$\begin{align}
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}}
\right)=\dfrac{d}{dx}(1)+\dfrac{d}{dx}(x)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)=0+1+2x \\
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)=1+2x\text{ }......\text{ (4)} \\
\end{align}$
Next, by substituting equation (3) and equation (4) in equation (2) we obtain:
$\Rightarrow$ $f'(x)=\dfrac{(-1+2x)\left( 1+x+{{x}^{2}} \right)-\left( 1-x+{{x}^{2}} \right)(1+2x)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}\text{ }......\text{ (5)}$
In the next step let us find $(-1+2x)\left( 1+x+{{x}^{2}} \right)$ i.e. multiply each term of the first part by each term of the second part.
$\begin{align}
& (-1+2x)\left( 1+x+{{x}^{2}} \right)=-1\times 1+-1\times x+-1\times {{x}^{2}}+2x\times 1+2x\times x+2x\times {{x}^{2}} \\
& (-1+2x)\left( 1+x+{{x}^{2}} \right)=-1-x-{{x}^{2}}+2x+2{{x}^{2}}+2{{x}^{3}} \\
\end{align}$
Now, by adding the coefficients of similar terms we get:
$\Rightarrow$ $(-1+2x)\left( 1+x+{{x}^{2}} \right)=-1+x+{{x}^{2}}+2{{x}^{3}}\text{ }.......\text{ (6)}$
Now, find the value of $\left( 1-x+{{x}^{2}} \right)(1+2x)$ i.e. multiply each term of the first part by each term of the second part.
$\begin{align}
& \left( 1-x+{{x}^{2}} \right)(1+2x)=1\times 1+1\times 2x-x\times 1-x\times 2x+{{x}^{2}}\times 1+{{x}^{2}}\times 2x \\
& \left( 1-x+{{x}^{2}} \right)(1+2x)=1+2x-x-2{{x}^{2}}+{{x}^{2}}+2{{x}^{3}} \\
\end{align}$
Now, by adding the coefficients of similar terms we get:
$\left( 1-x+{{x}^{2}} \right)(1+2x)=1+x-{{x}^{2}}+2{{x}^{3}}\text{ }.......\text{ (7)}$
So, by substituting equation (6) and equation (7) in equation (5) we obtain:
$\begin{align}
& f'(x)=\dfrac{-1+x+{{x}^{2}}+2{{x}^{3}}-\left( 1+x-{{x}^{2}}+2{{x}^{3}} \right)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}} \\
& f'(x)=\dfrac{-1+x+{{x}^{2}}+2{{x}^{3}}-1-x+{{x}^{2}}-2{{x}^{3}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}} \\
\end{align}$
Next, by adding the coefficients of the similar terms we get:
$f'(x)=\dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}$
Now, we have to put $f'(x)=0$.i.e.
$\begin{align}
& f'(x)=\dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}=0 \\
& \Rightarrow \dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}=0 \\
\end{align}$
In the next step, we have to do cross multiplication. Then we obtain:
$-2+2{{x}^{2}}=0$
Now, by taking -2 to the right side it becomes 2. i.e. we get:
$2{{x}^{2}}=2$
Next, by cross multiplication we get:
$\begin{align}
& {{x}^{2}}=\dfrac{2}{2} \\
& {{x}^{2}}=1 \\
\end{align}$
By taking the square root we get:
$x=\pm 1$
Now we have two values for $x$ i.e. $x=1$ or $x=-1$, they are called the critical points.
So, to find the minimum value we have to substitute $x=\pm 1$ in equation (1) and identify the smallest value.
In the next step put $x=1$ in equation (1), we obtain:
$\begin{align}
& f(1)=\dfrac{1-1+{{1}^{2}}}{1+1+{{1}^{2}}} \\
& f(1)=\dfrac{0+1}{2+1} \\
& f(1)=\dfrac{1}{3} \\
\end{align}$
Now, put $x=-1$ in equation (1), we get:
$\begin{align}
& f(-1)=\dfrac{-1-(-1)+{{(-1)}^{2}}}{1+(-1)+{{(-1)}^{2}}} \\
& f(-1)=\dfrac{1+1+1}{1-1+1} \\
& f(-1)=\dfrac{2+1}{0+1} \\
& f(-1)=\dfrac{3}{1} \\
& f(-1)=3 \\
\end{align}$
Hence, at $x=1$ we have $f(1)=\dfrac{1}{3}$ and at $x=-1$ we have $f(-1)=3$.
Therefore, we can say that the minimum value of $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ is $\dfrac{1}{3}$.
Note: Here, we got the values of $x$ as, $x=\pm 1$, they are the critical points, not the minimum value. To find the minimum value you have to put $x=\pm 1$ in $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ and then identify which one is smaller, that will be the corresponding minimum value.
Complete step-by-step answer:
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{u'v-uv'}{{{v}^{2}}}$
Here, for all real $x$, we have to find the minimum value of $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$.
Let us consider,
$f(x)=\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}\text{ }.....\text{ (1)}$
Now, to find the minimum value, we have to find the value of $x$ when $f'(x)=0$.
First, let us calculate $f'(x)$.
$f'(x)=\dfrac{d}{dx}\left( \dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}} \right)$
Here, $f(x)$ is of the form $\dfrac{u}{v}$. Therefore to find $f'(x)$ we have to apply the quotient rule. The quotient rule is given by:
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{u'v-uv'}{{{v}^{2}}}$
So, from equation (1) we have $u=1-x+{{x}^{2}}$ and $v=1+x+{{x}^{2}}$.
By applying the quotient rule in equation (1) we get:
$\Rightarrow$ $f'(x)=\dfrac{\dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)\left( 1+x+{{x}^{2}} \right)-\left( 1-x+{{x}^{2}} \right)\dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}\text{ }.....\text{ (2)}$
Now, let us find:
$\begin{align}
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}}
\right)=\dfrac{d}{dx}(1)+\dfrac{d}{dx}(-x)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=\dfrac{d}{dx}(1)-\dfrac{d}{dx}(x)+\dfrac{d}{dx}\left(
{{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=0-1+2x \\
& \dfrac{d}{dx}\left( 1-x+{{x}^{2}} \right)=-1+2x\text{ }.......\text{ (3)} \\
\end{align}$
$\begin{align}
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}}
\right)=\dfrac{d}{dx}(1)+\dfrac{d}{dx}(x)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \\
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)=0+1+2x \\
& \dfrac{d}{dx}\left( 1+x+{{x}^{2}} \right)=1+2x\text{ }......\text{ (4)} \\
\end{align}$
Next, by substituting equation (3) and equation (4) in equation (2) we obtain:
$\Rightarrow$ $f'(x)=\dfrac{(-1+2x)\left( 1+x+{{x}^{2}} \right)-\left( 1-x+{{x}^{2}} \right)(1+2x)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}\text{ }......\text{ (5)}$
In the next step let us find $(-1+2x)\left( 1+x+{{x}^{2}} \right)$ i.e. multiply each term of the first part by each term of the second part.
$\begin{align}
& (-1+2x)\left( 1+x+{{x}^{2}} \right)=-1\times 1+-1\times x+-1\times {{x}^{2}}+2x\times 1+2x\times x+2x\times {{x}^{2}} \\
& (-1+2x)\left( 1+x+{{x}^{2}} \right)=-1-x-{{x}^{2}}+2x+2{{x}^{2}}+2{{x}^{3}} \\
\end{align}$
Now, by adding the coefficients of similar terms we get:
$\Rightarrow$ $(-1+2x)\left( 1+x+{{x}^{2}} \right)=-1+x+{{x}^{2}}+2{{x}^{3}}\text{ }.......\text{ (6)}$
Now, find the value of $\left( 1-x+{{x}^{2}} \right)(1+2x)$ i.e. multiply each term of the first part by each term of the second part.
$\begin{align}
& \left( 1-x+{{x}^{2}} \right)(1+2x)=1\times 1+1\times 2x-x\times 1-x\times 2x+{{x}^{2}}\times 1+{{x}^{2}}\times 2x \\
& \left( 1-x+{{x}^{2}} \right)(1+2x)=1+2x-x-2{{x}^{2}}+{{x}^{2}}+2{{x}^{3}} \\
\end{align}$
Now, by adding the coefficients of similar terms we get:
$\left( 1-x+{{x}^{2}} \right)(1+2x)=1+x-{{x}^{2}}+2{{x}^{3}}\text{ }.......\text{ (7)}$
So, by substituting equation (6) and equation (7) in equation (5) we obtain:
$\begin{align}
& f'(x)=\dfrac{-1+x+{{x}^{2}}+2{{x}^{3}}-\left( 1+x-{{x}^{2}}+2{{x}^{3}} \right)}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}} \\
& f'(x)=\dfrac{-1+x+{{x}^{2}}+2{{x}^{3}}-1-x+{{x}^{2}}-2{{x}^{3}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}} \\
\end{align}$
Next, by adding the coefficients of the similar terms we get:
$f'(x)=\dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}$
Now, we have to put $f'(x)=0$.i.e.
$\begin{align}
& f'(x)=\dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}=0 \\
& \Rightarrow \dfrac{-2+2{{x}^{2}}}{{{\left( 1+x+{{x}^{2}} \right)}^{2}}}=0 \\
\end{align}$
In the next step, we have to do cross multiplication. Then we obtain:
$-2+2{{x}^{2}}=0$
Now, by taking -2 to the right side it becomes 2. i.e. we get:
$2{{x}^{2}}=2$
Next, by cross multiplication we get:
$\begin{align}
& {{x}^{2}}=\dfrac{2}{2} \\
& {{x}^{2}}=1 \\
\end{align}$
By taking the square root we get:
$x=\pm 1$
Now we have two values for $x$ i.e. $x=1$ or $x=-1$, they are called the critical points.
So, to find the minimum value we have to substitute $x=\pm 1$ in equation (1) and identify the smallest value.
In the next step put $x=1$ in equation (1), we obtain:
$\begin{align}
& f(1)=\dfrac{1-1+{{1}^{2}}}{1+1+{{1}^{2}}} \\
& f(1)=\dfrac{0+1}{2+1} \\
& f(1)=\dfrac{1}{3} \\
\end{align}$
Now, put $x=-1$ in equation (1), we get:
$\begin{align}
& f(-1)=\dfrac{-1-(-1)+{{(-1)}^{2}}}{1+(-1)+{{(-1)}^{2}}} \\
& f(-1)=\dfrac{1+1+1}{1-1+1} \\
& f(-1)=\dfrac{2+1}{0+1} \\
& f(-1)=\dfrac{3}{1} \\
& f(-1)=3 \\
\end{align}$
Hence, at $x=1$ we have $f(1)=\dfrac{1}{3}$ and at $x=-1$ we have $f(-1)=3$.
Therefore, we can say that the minimum value of $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ is $\dfrac{1}{3}$.
Note: Here, we got the values of $x$ as, $x=\pm 1$, they are the critical points, not the minimum value. To find the minimum value you have to put $x=\pm 1$ in $\dfrac{1-x+{{x}^{2}}}{1+x+{{x}^{2}}}$ and then identify which one is smaller, that will be the corresponding minimum value.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

