
For \[A={{133}^{\circ }},2\cos \left( \dfrac{A}{2} \right)\] is equal to
A. \[-\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}\]
B. \[-\sqrt{1+\sin (A)}+\sqrt{1-\sin (A)}\]
C. \[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}\]
D. \[\sqrt{1+\sin (A)}+\sqrt{1-\sin (A)}\]
Answer
510k+ views
Hint: According to given question to find the value of \[2\cos \left( \dfrac{A}{2} \right)\] we have to solve each option (hit and try method) by applying Trigonometry property to get the answer. \[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}\]By solving this we get the answer as\[2\cos \left( \dfrac{A}{2} \right)\].
Complete step by step answer:
Given data is:
\[A={{133}^{\circ }}----(1)\]
If we divide this equation\[(1)\] we get:
\[\dfrac{A}{2}=\dfrac{{{133}^{\circ }}}{2}=\,{{66.5}^{\circ }}\] (Acute angle)
Now, we have to find the term of \[\sqrt{1+\sin (A)}\]
By applying trigonometry identity formula, \[{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)=1\]
By solving substituting the formula we get:
\[\sqrt{1+\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)+\sin (A)}--(2)\]
By using the half angle formula,
\[\sin (A)=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)\]
By substituting the half angle formula in equation\[(2)\]
\[\sqrt{1+\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)+2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}\]
By using the property of \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
We get,
\[\sqrt{1+\sin (A)}=\sqrt{{{\left( \sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right) \right)}^{2}}}\]
By simplifying the further equation
We get:
\[\sqrt{1+\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)----(3)\]
Similarly we can solve for \[\sqrt{1-\sin (A)}\]
We get:
By using trigonometry identity property,
\[{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)=1\]
By substituting the formula we get:
\[\sqrt{1-\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)-\sin (A)}--(4)\]
By using the half angle formula,
\[\sin (A)=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)\]
By substituting the half angle formula in equation \[(4)\]
\[\sqrt{1-\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)-2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}\]
By using the property of
\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\sqrt{1-\sin (A)}=\sqrt{{{\left( \sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right) \right)}^{2}}}\]
By simplifying the further equation we get:
\[\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right)----(5)\]
By subtracting the two equation \[(3)\]and \[(5)\]
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)-\left( \sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right) \right)\]
By simplifying the equation further we get:
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)-\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)\]
So here, \[\sin \left( \dfrac{A}{2} \right)\] get cancelled out
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\cos \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)\]
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=2\cos \left( \dfrac{A}{2} \right)\]
So, the correct answer is “Option C”.
Note: In this question asked to find the value of \[2\cos \left( \dfrac{A}{2} \right)\] then we can subtract the two equation in the above solution if the question is asked about \[2\sin \left( \dfrac{A}{2} \right)\] then we have to add the two equation to get the value. So in this way sometimes we can use the hit and try method and also apply the trigonometry property and use the half angle formula in the option to get the correct options.
Complete step by step answer:
Given data is:
\[A={{133}^{\circ }}----(1)\]
If we divide this equation\[(1)\] we get:
\[\dfrac{A}{2}=\dfrac{{{133}^{\circ }}}{2}=\,{{66.5}^{\circ }}\] (Acute angle)
Now, we have to find the term of \[\sqrt{1+\sin (A)}\]
By applying trigonometry identity formula, \[{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)=1\]
By solving substituting the formula we get:
\[\sqrt{1+\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)+\sin (A)}--(2)\]
By using the half angle formula,
\[\sin (A)=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)\]
By substituting the half angle formula in equation\[(2)\]
\[\sqrt{1+\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)+2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}\]
By using the property of \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
We get,
\[\sqrt{1+\sin (A)}=\sqrt{{{\left( \sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right) \right)}^{2}}}\]
By simplifying the further equation
We get:
\[\sqrt{1+\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)----(3)\]
Similarly we can solve for \[\sqrt{1-\sin (A)}\]
We get:
By using trigonometry identity property,
\[{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)=1\]
By substituting the formula we get:
\[\sqrt{1-\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)-\sin (A)}--(4)\]
By using the half angle formula,
\[\sin (A)=2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)\]
By substituting the half angle formula in equation \[(4)\]
\[\sqrt{1-\sin (A)}=\sqrt{{{\sin }^{2}}\left( \dfrac{A}{2} \right)+{{\cos }^{2}}\left( \dfrac{A}{2} \right)-2\sin \left( \dfrac{A}{2} \right)\cos \left( \dfrac{A}{2} \right)}\]
By using the property of
\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]
\[\sqrt{1-\sin (A)}=\sqrt{{{\left( \sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right) \right)}^{2}}}\]
By simplifying the further equation we get:
\[\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right)----(5)\]
By subtracting the two equation \[(3)\]and \[(5)\]
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)-\left( \sin \left( \dfrac{A}{2} \right)-\cos \left( \dfrac{A}{2} \right) \right)\]
By simplifying the equation further we get:
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)-\sin \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)\]
So here, \[\sin \left( \dfrac{A}{2} \right)\] get cancelled out
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=\cos \left( \dfrac{A}{2} \right)+\cos \left( \dfrac{A}{2} \right)\]
\[\sqrt{1+\sin (A)}-\sqrt{1-\sin (A)}=2\cos \left( \dfrac{A}{2} \right)\]
So, the correct answer is “Option C”.
Note: In this question asked to find the value of \[2\cos \left( \dfrac{A}{2} \right)\] then we can subtract the two equation in the above solution if the question is asked about \[2\sin \left( \dfrac{A}{2} \right)\] then we have to add the two equation to get the value. So in this way sometimes we can use the hit and try method and also apply the trigonometry property and use the half angle formula in the option to get the correct options.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

