Answer
Verified
495.3k+ views
Hint: In this question, we are supposed to combine three cheese balls with diameter 2 inches, 4 inches and 6 inches, when we combine the volume of the bigger cheese ball will be the sum of the volume of the three smaller cheese balls.
Volume of the bigger cheese ball = Sum of volume of the three smaller cheese balls.
Volume of new cheese ball = $\dfrac{4}{3}\pi \left( {{r_1}^3 + {r_2}^3 + {r_3}^3} \right)$
Putting the values of r in the above equation,
Volume of bigger cheese ball = $\dfrac{4}{3}\pi \left( {{2^3} + {4^3} + {6^3}} \right)$
Since the cheese ball is in spherical shape the volume can be taken as
Volume of bigger cheese ball =$\dfrac{4}{3}\pi {R^3}$
On equating both the equations,
$\dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi \left( {8 + 64 + 216} \right)$
Cancelling the common terms, we get,
${R^3} = \left( {8 + 64 + 216} \right)$
${R^3} = 288$
On solving it further, we get,
$R = \sqrt[3]{{288}}$
On factoring, we get,
$R = \sqrt[3]{{8 \times 36}}$
$R = 2\sqrt[3]{{36}}$ inches
Answer = Option E
Note: Do not make the mistake of equating the sum of areas or perimeter because with the change of structure, the value of these entities will also change, but the value of volume will remain the same.
Volume of the bigger cheese ball = Sum of volume of the three smaller cheese balls.
Volume of new cheese ball = $\dfrac{4}{3}\pi \left( {{r_1}^3 + {r_2}^3 + {r_3}^3} \right)$
Putting the values of r in the above equation,
Volume of bigger cheese ball = $\dfrac{4}{3}\pi \left( {{2^3} + {4^3} + {6^3}} \right)$
Since the cheese ball is in spherical shape the volume can be taken as
Volume of bigger cheese ball =$\dfrac{4}{3}\pi {R^3}$
On equating both the equations,
$\dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi \left( {8 + 64 + 216} \right)$
Cancelling the common terms, we get,
${R^3} = \left( {8 + 64 + 216} \right)$
${R^3} = 288$
On solving it further, we get,
$R = \sqrt[3]{{288}}$
On factoring, we get,
$R = \sqrt[3]{{8 \times 36}}$
$R = 2\sqrt[3]{{36}}$ inches
Answer = Option E
Note: Do not make the mistake of equating the sum of areas or perimeter because with the change of structure, the value of these entities will also change, but the value of volume will remain the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it