
For a matrix $A = \left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)$ , the value of $\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} $ is equal to
A.$\left( {\begin{array}{*{20}{c}}
1&{100} \\
0&1
\end{array}} \right)$
B.$\left( {\begin{array}{*{20}{c}}
1&{4950} \\
0&1
\end{array}} \right)$
C.$\left( {\begin{array}{*{20}{c}}
1&{5050} \\
0&1
\end{array}} \right)$
D.$\left( {\begin{array}{*{20}{c}}
1&{2500} \\
0&1
\end{array}} \right)$
Answer
505.8k+ views
Hint: The symbol $\prod\limits_{r = 1}^{50} {} $ represents the product of matrices obtained on putting the values r=1,2,3,4….50 in matrix A. Multiplying all the 50 matrices will be tough work so simplifying the product of matrices and by observing a pattern in the results, we can get to the correct answer.
Complete step-by-step answer:
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2(1) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(2) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(3) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(4) - 1} \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{2(50) - 1} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&1 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
On multiplying the first two matrices we get,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 1 \times 0}&{1 \times 3 + 1 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 3 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&4 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now multiplying the matrix obtained by the multiplication of 1st and 2nd matrix with the 3rd matrix,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 4 \times 0}&{1 \times 5 + 4 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 5 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&9 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now multiplying the obtained matrix with the 4th matrix,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 9 \times 0}&{1 \times 7 + 9 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 7 + 1 \times 1}
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{16} \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now on observing the result of the multiplication of matrices, we see a common trend as we go on.
On the multiplication of the first two matrices, we got $\left( {\begin{array}{*{20}{c}}
1&4 \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(2)}^2}} \\
0&1
\end{array}} \right)$
On the multiplication of the first three matrices, we got $\left( {\begin{array}{*{20}{c}}
1&9 \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(3)}^2}} \\
0&1
\end{array}} \right)$
On the multiplication of the first four matrices, we got $\left( {\begin{array}{*{20}{c}}
1&{16} \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(4)}^2}} \\
0&1
\end{array}} \right)$
Thus we can say that, on multiplication of first n matrices, we get $\left( {\begin{array}{*{20}{c}}
1&{{n^2}} \\
0&1
\end{array}} \right)$
So, on multiplying the 50 matrices, we get $\left( {\begin{array}{*{20}{c}}
1&{{{(50)}^2}} \\
0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{2500} \\
0&1
\end{array}} \right)$
Therefore, $\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2500} \\
0&1
\end{array}} \right)$
So, the correct answer is “Option D”.
Additional information:
$\sum\limits_{r = a}^b {} $ Represents the sum of a given quantity from $a$ to $b$ .
For example, $\sum\limits_{x = 1}^5 x = 1 + 2 + 3 + 4 + 5$ whereas $\prod\limits_{x = 1}^5 x = 1 \times 2 \times 3 \times 4 \times 5$ .
Note: The product of two matrices $\left( {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right)$ and $\left( {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right)$ is equal to
$\left( {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{a \times e + b \times g}&{a \times f + b \times h} \\
{c \times e + d \times g}&{c \times f + d \times h}
\end{array}} \right)$
Multiplication of matrices is not commutative, that is AB≠BA so matrices should be multiplied carefully in the given order to get the correct answer.
Complete step-by-step answer:
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2(1) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(2) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(3) - 1} \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&{2(4) - 1} \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{2(50) - 1} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&1 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
On multiplying the first two matrices we get,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 1 \times 0}&{1 \times 3 + 1 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 3 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&4 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&5 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now multiplying the matrix obtained by the multiplication of 1st and 2nd matrix with the 3rd matrix,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 4 \times 0}&{1 \times 5 + 4 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 5 + 1 \times 1}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&9 \\
0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&7 \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now multiplying the obtained matrix with the 4th matrix,
$
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
{1 \times 1 + 9 \times 0}&{1 \times 7 + 9 \times 1} \\
{0 \times 1 + 1 \times 0}&{0 \times 7 + 1 \times 1}
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{16} \\
0&1
\end{array}} \right)......\left( {\begin{array}{*{20}{c}}
1&{99} \\
0&1
\end{array}} \right) \\
$
Now on observing the result of the multiplication of matrices, we see a common trend as we go on.
On the multiplication of the first two matrices, we got $\left( {\begin{array}{*{20}{c}}
1&4 \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(2)}^2}} \\
0&1
\end{array}} \right)$
On the multiplication of the first three matrices, we got $\left( {\begin{array}{*{20}{c}}
1&9 \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(3)}^2}} \\
0&1
\end{array}} \right)$
On the multiplication of the first four matrices, we got $\left( {\begin{array}{*{20}{c}}
1&{16} \\
0&1
\end{array}} \right)$ which can also be written as $\left( {\begin{array}{*{20}{c}}
1&{{{(4)}^2}} \\
0&1
\end{array}} \right)$
Thus we can say that, on multiplication of first n matrices, we get $\left( {\begin{array}{*{20}{c}}
1&{{n^2}} \\
0&1
\end{array}} \right)$
So, on multiplying the 50 matrices, we get $\left( {\begin{array}{*{20}{c}}
1&{{{(50)}^2}} \\
0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{2500} \\
0&1
\end{array}} \right)$
Therefore, $\prod\limits_{r = 1}^{50} {\left( {\begin{array}{*{20}{c}}
1&{2r - 1} \\
0&1
\end{array}} \right)} = \left( {\begin{array}{*{20}{c}}
1&{2500} \\
0&1
\end{array}} \right)$
So, the correct answer is “Option D”.
Additional information:
$\sum\limits_{r = a}^b {} $ Represents the sum of a given quantity from $a$ to $b$ .
For example, $\sum\limits_{x = 1}^5 x = 1 + 2 + 3 + 4 + 5$ whereas $\prod\limits_{x = 1}^5 x = 1 \times 2 \times 3 \times 4 \times 5$ .
Note: The product of two matrices $\left( {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right)$ and $\left( {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right)$ is equal to
$\left( {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{a \times e + b \times g}&{a \times f + b \times h} \\
{c \times e + d \times g}&{c \times f + d \times h}
\end{array}} \right)$
Multiplication of matrices is not commutative, that is AB≠BA so matrices should be multiplied carefully in the given order to get the correct answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
