Answer
Verified
448.8k+ views
Hint:For, the linear programming problem to have a unique solution, we take into consideration
One equation, represents a objective function of $x$ and $y$, i.e. $z = ax + by$ and the two inequalities, represents the constraints like $mx + ny \geqslant c$ or $px + qy \leqslant r$.
Complete step-by-step answer:
Step by step solution:
For defining a linear programming problem to have a unique solution.
The solution must exist at the intersection of two or more constraints and should be confined by using all alterations.
Then, the problem becomes convex means there are no dents or indentations in the curve or polygon and has a single optimum (maximum or minimum) solution, which is possible when constraints are satisfied by the set of points that satisfy inequalities, thus feasible region is required.
Therefore, the convex set of equations is included in the feasible region.
So, the correct answer is “Option A”.
Note:A feasible region is defined by the set of points which satisfy a system of constraints i.e., inequalities. The region satisfies all restrictions imposed by linear programming scenario. The concept is an optimization technique.
The convex set is a set of points in a plane that is said to be convex, the line segment joining any two points in the set, completely lies in the set.
A bounded feasible region will have both a maximum value and minimum value for the objective function. It is bounded if it can be enclosed in any shape.
One equation, represents a objective function of $x$ and $y$, i.e. $z = ax + by$ and the two inequalities, represents the constraints like $mx + ny \geqslant c$ or $px + qy \leqslant r$.
Complete step-by-step answer:
Step by step solution:
For defining a linear programming problem to have a unique solution.
The solution must exist at the intersection of two or more constraints and should be confined by using all alterations.
Then, the problem becomes convex means there are no dents or indentations in the curve or polygon and has a single optimum (maximum or minimum) solution, which is possible when constraints are satisfied by the set of points that satisfy inequalities, thus feasible region is required.
Therefore, the convex set of equations is included in the feasible region.
So, the correct answer is “Option A”.
Note:A feasible region is defined by the set of points which satisfy a system of constraints i.e., inequalities. The region satisfies all restrictions imposed by linear programming scenario. The concept is an optimization technique.
The convex set is a set of points in a plane that is said to be convex, the line segment joining any two points in the set, completely lies in the set.
A bounded feasible region will have both a maximum value and minimum value for the objective function. It is bounded if it can be enclosed in any shape.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell