
For a given value A, if $\tan A+\cot A=4$, then ${{\tan }^{2}}A+{{\cot }^{2}}A$ is equal to
A. 10
B. 11
C. 12
D. 14
Answer
593.7k+ views
Hint: To solve this question, we have to use the relation of $\cot A=\dfrac{1}{\tan A}$ in the equation $\tan A+\cot A=4$ and we have to solve for $\tan A$ using the quadratic equation concept. After getting the value of $\tan A$, we can get the value of $\cot A$, and then we can substitute the values in ${{\tan }^{2}}A+{{\cot }^{2}}A$ to get the required answer.
Complete step-by-step solution:
In the question, it is given that $\tan A+\cot A=4\to \left( 1 \right)$
We know that $\cot A=\dfrac{1}{\tan A}$
Substituting in the equation-1, we get
$\tan A+\dfrac{1}{\tan A}=4$
Taking L.C.M and multiplying by $\tan A$, we get
$\begin{align}
& \dfrac{\tan A\times \tan A+1}{\tan A}=4 \\
& \dfrac{{{\tan }^{2}}A+1}{\tan A}=4 \\
& {{\tan }^{2}}A+1=4\tan A \\
\end{align}$
Subtracting $4\tan A$ on both sides, we get
${{\tan }^{2}}A-4\tan A+1=0\to \left( 2 \right)$
We can infer that equation-2 is a quadratic equation in $\tan A$.
The roots of a quadratic equation $a{{x}^{2}}+bx+c=0$ are given by
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Comparing this with the equation-2, we get
$\begin{align}
& x=\tan A \\
& a=1,b=-4,c=1 \\
\end{align}$
So we can write the values of $\tan A$ as
$\begin{align}
& \tan A=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times 1}}{2\times 1} \\
& \tan A=\dfrac{4\pm \sqrt{16-4}}{2}=\dfrac{4\pm \sqrt{12}}{2}=\dfrac{4\pm \sqrt{4\times 3}}{2}=\dfrac{4\pm 2\sqrt{3}}{2} \\
\end{align}$
Cancelling 2 in the numerator and denominator, we get
$\tan A=2\pm \sqrt{3}$
Let us consider the case -1 as $\tan A=2+\sqrt{3}$
As we know that $\cot A=\dfrac{1}{\tan A}$
$\cot A=\dfrac{1}{2+\sqrt{3}}$
Multiplying by $2-\sqrt{3}$ in the numerator and denominator, we get
$\cot A=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\left( 2+\sqrt{3} \right)\times \left( 2-\sqrt{3} \right)}$
The denominator is in the form of $\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Using the relation in the denominator, we get
$\cot A=\dfrac{2-\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$
Using the values of $\tan A\text{ and }\cot A$ in the required expression ${{\tan }^{2}}A+{{\cot }^{2}}A$, we get
${{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}$
The R.H.S is of the form ${{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)$
Applying this in the above R.H.S, we get
${{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14$
So, for case -1 we get,
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
Let us consider the case -2 as $\tan A=2-\sqrt{3}$
As we know that $\cot A=\dfrac{1}{\tan A}$
$\cot A=\dfrac{1}{2-\sqrt{3}}$
Multiplying by $2+\sqrt{3}$ in the numerator and denominator, we get
$\cot A=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}=\dfrac{2+\sqrt{3}}{\left( 2-\sqrt{3} \right)\times \left( 2+\sqrt{3} \right)}$
The denominator is in the form of $\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Using the relation in the denominator, we get
$\cot A=\dfrac{2+\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3}$
Using the values of $\tan A\text{ and }\cot A$ in the required expression ${{\tan }^{2}}A+{{\cot }^{2}}A$, we get
${{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}$
The R.H.S is of the form ${{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)$
Applying this in the above R.H.S, we get
${{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14$
So, for case -2 we get,
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
From the two cases, we got the same answer, so we can conclude that
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
$\therefore $ ${{\tan }^{2}}A+{{\cot }^{2}}A=14$. The answer is option-D
Note: We can do the question in an alternative way that is to square on both sides of $\tan A+\cot A=4$. Squaring on both sides, we get
$\begin{align}
& {{\left( \tan A+\cot A \right)}^{2}}={{4}^{2}} \\
& {{\tan }^{2}}A+{{\cot }^{2}}A+2\times \tan A\times \cot A=16 \\
\end{align}$
As $\cot A=\dfrac{1}{\tan A}$
$\tan A\times \cot A=1$
Using this in the above equation, we get
$\begin{align}
& {{\tan }^{2}}A+{{\cot }^{2}}A+2\times 1=16 \\
& {{\tan }^{2}}A+{{\cot }^{2}}A=16-2 \\
& {{\tan }^{2}}A+{{\cot }^{2}}A=14 \\
\end{align}$
The answer is option-D.
Complete step-by-step solution:
In the question, it is given that $\tan A+\cot A=4\to \left( 1 \right)$
We know that $\cot A=\dfrac{1}{\tan A}$
Substituting in the equation-1, we get
$\tan A+\dfrac{1}{\tan A}=4$
Taking L.C.M and multiplying by $\tan A$, we get
$\begin{align}
& \dfrac{\tan A\times \tan A+1}{\tan A}=4 \\
& \dfrac{{{\tan }^{2}}A+1}{\tan A}=4 \\
& {{\tan }^{2}}A+1=4\tan A \\
\end{align}$
Subtracting $4\tan A$ on both sides, we get
${{\tan }^{2}}A-4\tan A+1=0\to \left( 2 \right)$
We can infer that equation-2 is a quadratic equation in $\tan A$.
The roots of a quadratic equation $a{{x}^{2}}+bx+c=0$ are given by
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Comparing this with the equation-2, we get
$\begin{align}
& x=\tan A \\
& a=1,b=-4,c=1 \\
\end{align}$
So we can write the values of $\tan A$ as
$\begin{align}
& \tan A=\dfrac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\times 1\times 1}}{2\times 1} \\
& \tan A=\dfrac{4\pm \sqrt{16-4}}{2}=\dfrac{4\pm \sqrt{12}}{2}=\dfrac{4\pm \sqrt{4\times 3}}{2}=\dfrac{4\pm 2\sqrt{3}}{2} \\
\end{align}$
Cancelling 2 in the numerator and denominator, we get
$\tan A=2\pm \sqrt{3}$
Let us consider the case -1 as $\tan A=2+\sqrt{3}$
As we know that $\cot A=\dfrac{1}{\tan A}$
$\cot A=\dfrac{1}{2+\sqrt{3}}$
Multiplying by $2-\sqrt{3}$ in the numerator and denominator, we get
$\cot A=\dfrac{1}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\left( 2+\sqrt{3} \right)\times \left( 2-\sqrt{3} \right)}$
The denominator is in the form of $\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Using the relation in the denominator, we get
$\cot A=\dfrac{2-\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$
Using the values of $\tan A\text{ and }\cot A$ in the required expression ${{\tan }^{2}}A+{{\cot }^{2}}A$, we get
${{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}$
The R.H.S is of the form ${{\left( a+b \right)}^{2}}+{{\left( a-b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)$
Applying this in the above R.H.S, we get
${{\left( 2+\sqrt{3} \right)}^{2}}+{{\left( 2-\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14$
So, for case -1 we get,
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
Let us consider the case -2 as $\tan A=2-\sqrt{3}$
As we know that $\cot A=\dfrac{1}{\tan A}$
$\cot A=\dfrac{1}{2-\sqrt{3}}$
Multiplying by $2+\sqrt{3}$ in the numerator and denominator, we get
$\cot A=\dfrac{1}{2-\sqrt{3}}\times \dfrac{2+\sqrt{3}}{2+\sqrt{3}}=\dfrac{2+\sqrt{3}}{\left( 2-\sqrt{3} \right)\times \left( 2+\sqrt{3} \right)}$
The denominator is in the form of $\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Using the relation in the denominator, we get
$\cot A=\dfrac{2+\sqrt{3}}{{{2}^{2}}-{{\left( \sqrt{3} \right)}^{2}}}=\dfrac{2+\sqrt{3}}{4-3}=2+\sqrt{3}$
Using the values of $\tan A\text{ and }\cot A$ in the required expression ${{\tan }^{2}}A+{{\cot }^{2}}A$, we get
${{\tan }^{2}}A+{{\cot }^{2}}A={{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}$
The R.H.S is of the form ${{\left( a-b \right)}^{2}}+{{\left( a+b \right)}^{2}}=2\times \left( {{a}^{2}}+{{b}^{2}} \right)$
Applying this in the above R.H.S, we get
${{\left( 2-\sqrt{3} \right)}^{2}}+{{\left( 2+\sqrt{3} \right)}^{2}}=2\times \left( {{2}^{2}}+{{\left( \sqrt{3} \right)}^{2}} \right)=2\times \left( 4+3 \right)=2\times 7=14$
So, for case -2 we get,
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
From the two cases, we got the same answer, so we can conclude that
${{\tan }^{2}}A+{{\cot }^{2}}A=14$
$\therefore $ ${{\tan }^{2}}A+{{\cot }^{2}}A=14$. The answer is option-D
Note: We can do the question in an alternative way that is to square on both sides of $\tan A+\cot A=4$. Squaring on both sides, we get
$\begin{align}
& {{\left( \tan A+\cot A \right)}^{2}}={{4}^{2}} \\
& {{\tan }^{2}}A+{{\cot }^{2}}A+2\times \tan A\times \cot A=16 \\
\end{align}$
As $\cot A=\dfrac{1}{\tan A}$
$\tan A\times \cot A=1$
Using this in the above equation, we get
$\begin{align}
& {{\tan }^{2}}A+{{\cot }^{2}}A+2\times 1=16 \\
& {{\tan }^{2}}A+{{\cot }^{2}}A=16-2 \\
& {{\tan }^{2}}A+{{\cot }^{2}}A=14 \\
\end{align}$
The answer is option-D.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

