Answer
Verified
455.1k+ views
Hint: Start by assuming the present age as some variable and try to form relations as per the statement given in the question. Solve the relationships formed and find out the value of the variable assumed, ignore negative value if found as age can never be negative.
Complete step-by-step solution:
Let us take the present age of the person to be ‘x’ years and the son’s age be ‘y’ years.
Now, let us form the required relation of ages.
The age of the person 5 years from now will be=$x + 5$ years
The age of the person 5 years ago was =$x - 5$ years
The age of the son 5 years from now will be=$y + 5$ years
The age of the son 5 years ago was =$y - 5$ years
Now, according to the statement given in the question, we have
$x - 5 = 7(y - 5)$
Solving this, we get
$x - 5 = 7y - 35 \\
\Rightarrow x - 7y = - 30 \to eqn.1 $
Similarly , we have one more condition,
$x + 5 = 3(y + 5)$
Solving this, we get
$ x + 5 = 3y + 15 \\
\Rightarrow x - 3y = 10 \to eqn.2 $
Solving, eqn.1 and Eqn. 2 simultaneously, we get
$ - 4y = - 40 \\
\Rightarrow y = 10 $
On substituting the value of y in equation 1 we get,
\[x = 40\]
Therefore, the present age of the person and son is 40 years and 10 years respectively.
Note: Such similar problems can be solved by following the approach of part by part work, read a statement and then form its equation or relation and repeat the same for the next statement. Attention is required while solving such questions as they can have quadratic equations, needed to be solved by either splitting middle term or discriminant rule and any negative values are to be neglected as age can never be negative.
Complete step-by-step solution:
Let us take the present age of the person to be ‘x’ years and the son’s age be ‘y’ years.
Now, let us form the required relation of ages.
The age of the person 5 years from now will be=$x + 5$ years
The age of the person 5 years ago was =$x - 5$ years
The age of the son 5 years from now will be=$y + 5$ years
The age of the son 5 years ago was =$y - 5$ years
Now, according to the statement given in the question, we have
$x - 5 = 7(y - 5)$
Solving this, we get
$x - 5 = 7y - 35 \\
\Rightarrow x - 7y = - 30 \to eqn.1 $
Similarly , we have one more condition,
$x + 5 = 3(y + 5)$
Solving this, we get
$ x + 5 = 3y + 15 \\
\Rightarrow x - 3y = 10 \to eqn.2 $
Solving, eqn.1 and Eqn. 2 simultaneously, we get
$ - 4y = - 40 \\
\Rightarrow y = 10 $
On substituting the value of y in equation 1 we get,
\[x = 40\]
Therefore, the present age of the person and son is 40 years and 10 years respectively.
Note: Such similar problems can be solved by following the approach of part by part work, read a statement and then form its equation or relation and repeat the same for the next statement. Attention is required while solving such questions as they can have quadratic equations, needed to be solved by either splitting middle term or discriminant rule and any negative values are to be neglected as age can never be negative.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE