
Find Volume of tetrahedron $\left( {D,ABC} \right)$ where,
$A = \left( { - 4,3,6} \right)$
$B = \left( { - 1,0,3} \right)$
$C = \left( {2,4, - 5} \right)$
$D = \left( {1,1,1} \right)$
Answer
505.2k+ views
Hint: In order to find the volume of the tetrahedron, use the concept of volume of tetrahedron that is given as ($\dfrac{1}{6}th$ of the modulus of the products of the vectors) from which they are formed. Initiate with finding the vectors and then calculate the scalar triple product which would be equal to the determinant of the coefficients of the vectors.
Complete answer: Since, we know that a tetrahedron is a kind of pyramid with a flat polygon base and triangular faces connecting the base to a common point, having four faces, six edges and four vertices. It’s three edges meet at a vertex.
Rough Diagram of tetrahedron is:
The four vertices given are $D = \left( {1,1,1} \right)$, $A = \left( { - 4,3,6} \right)$, $B = \left( { - 1,0,3} \right)$, $C = \left( {2,4, - 5} \right)$.
Tetrahedron with the given vertices are:
So, the vector $DA$ will be $ = \left( { - 4 - 1} \right)i + \left( {3 - 1} \right)j + \left( {6 - 1} \right)k$, that can be solved and written as $DA = - 5i + 2j + 5k$.
Similarly, vector $DB$ will be $ = \left( { - 1 - 1} \right)i + \left( {0 - 1} \right)j + \left( {3 - 1} \right)k = - 2i - j + 2k$.
And, vector $DC$ will be $ = \left( {2 - 1} \right)i + \left( {4 - 1} \right)j + \left( { - 5 - 1} \right)k = i + 3j - 6k$.
From the formula for the volume of tetrahedron, we know that:
Volume $ = \dfrac{1}{6} \times \left| {scalar\_triple\_product\_of\_these\_three\_vectors} \right|$.
Which can be written as \[Volume = \dfrac{1}{6} \times \left| {\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\}} \right|\]
Scalar triple product is written as the determinant of the values of the vectors.
So, it’s written as Scalar triple product \[\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\} = \left( {\begin{array}{*{20}{c}}
{ - 5}&2&5 \\
{ - 2}&{ - 1}&2 \\
1&3&{ - 6}
\end{array}} \right)\]
Solving the matrix determinant, and we get:
\[
\left( {\begin{array}{*{20}{c}}
{ - 5}&2&5 \\
{ - 2}&{ - 1}&2 \\
1&3&{ - 6}
\end{array}} \right) \\
\Rightarrow - 5\left( {\left( { - 1 \times - 6} \right) - \left( {3 \times 2} \right)} \right) - 2\left( {\left( { - 2 \times - 6} \right) - \left( {1 \times 2} \right)} \right) + 5\left( {\left( { - 2 \times 3} \right) - \left( { - 1 \times 1} \right)} \right) \\
\]
Solving the inner and outer parenthesis, and we get:
\[
\Rightarrow - 5\left( {\left( 6 \right) - \left( 6 \right)} \right) - 2\left( {\left( {12} \right) - \left( 2 \right)} \right) + 5\left( {\left( { - 6} \right) + 1} \right) \\
\Rightarrow - 5\left( 0 \right) - 2\left( {10} \right) + 5\left( { - 5} \right) \\
\Rightarrow 0 - 20 - 25 \\
\Rightarrow - 45 \\
\]
Therefore, the scalar triple product value is \[\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\} = - 45\].
Substituting this value in the volume, and we get:
\[Volume = \dfrac{1}{6} \times \left| { - 45} \right|\]
Solving the modulus:
\[Volume = \dfrac{{45}}{6}\]
Since, the value can be further simplified in simplified fractions and can be written as \[\dfrac{{45}}{6} = \dfrac{{15}}{2}\], so the volume of the tetrahedron is \[\dfrac{{15}}{2}\] units.
Note:
Since, volume is a positive quantity so always apply modulus to the scalar product.
In the case of a tetrahedron if the base is a triangle with any four faces that can be considered as the base, because of which a tetrahedron is also known as a triangular pyramid.
Complete answer: Since, we know that a tetrahedron is a kind of pyramid with a flat polygon base and triangular faces connecting the base to a common point, having four faces, six edges and four vertices. It’s three edges meet at a vertex.
Rough Diagram of tetrahedron is:
The four vertices given are $D = \left( {1,1,1} \right)$, $A = \left( { - 4,3,6} \right)$, $B = \left( { - 1,0,3} \right)$, $C = \left( {2,4, - 5} \right)$.
Tetrahedron with the given vertices are:
So, the vector $DA$ will be $ = \left( { - 4 - 1} \right)i + \left( {3 - 1} \right)j + \left( {6 - 1} \right)k$, that can be solved and written as $DA = - 5i + 2j + 5k$.
Similarly, vector $DB$ will be $ = \left( { - 1 - 1} \right)i + \left( {0 - 1} \right)j + \left( {3 - 1} \right)k = - 2i - j + 2k$.
And, vector $DC$ will be $ = \left( {2 - 1} \right)i + \left( {4 - 1} \right)j + \left( { - 5 - 1} \right)k = i + 3j - 6k$.
From the formula for the volume of tetrahedron, we know that:
Volume $ = \dfrac{1}{6} \times \left| {scalar\_triple\_product\_of\_these\_three\_vectors} \right|$.
Which can be written as \[Volume = \dfrac{1}{6} \times \left| {\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\}} \right|\]
Scalar triple product is written as the determinant of the values of the vectors.
So, it’s written as Scalar triple product \[\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\} = \left( {\begin{array}{*{20}{c}}
{ - 5}&2&5 \\
{ - 2}&{ - 1}&2 \\
1&3&{ - 6}
\end{array}} \right)\]
Solving the matrix determinant, and we get:
\[
\left( {\begin{array}{*{20}{c}}
{ - 5}&2&5 \\
{ - 2}&{ - 1}&2 \\
1&3&{ - 6}
\end{array}} \right) \\
\Rightarrow - 5\left( {\left( { - 1 \times - 6} \right) - \left( {3 \times 2} \right)} \right) - 2\left( {\left( { - 2 \times - 6} \right) - \left( {1 \times 2} \right)} \right) + 5\left( {\left( { - 2 \times 3} \right) - \left( { - 1 \times 1} \right)} \right) \\
\]
Solving the inner and outer parenthesis, and we get:
\[
\Rightarrow - 5\left( {\left( 6 \right) - \left( 6 \right)} \right) - 2\left( {\left( {12} \right) - \left( 2 \right)} \right) + 5\left( {\left( { - 6} \right) + 1} \right) \\
\Rightarrow - 5\left( 0 \right) - 2\left( {10} \right) + 5\left( { - 5} \right) \\
\Rightarrow 0 - 20 - 25 \\
\Rightarrow - 45 \\
\]
Therefore, the scalar triple product value is \[\left\{ {\left( {\overrightarrow {DB} \times \overrightarrow {DC} } \right).\overrightarrow {AD} } \right\} = - 45\].
Substituting this value in the volume, and we get:
\[Volume = \dfrac{1}{6} \times \left| { - 45} \right|\]
Solving the modulus:
\[Volume = \dfrac{{45}}{6}\]
Since, the value can be further simplified in simplified fractions and can be written as \[\dfrac{{45}}{6} = \dfrac{{15}}{2}\], so the volume of the tetrahedron is \[\dfrac{{15}}{2}\] units.
Note:
Since, volume is a positive quantity so always apply modulus to the scalar product.
In the case of a tetrahedron if the base is a triangle with any four faces that can be considered as the base, because of which a tetrahedron is also known as a triangular pyramid.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

