
How do you find vertical, horizontal and oblique asymptotes for $F\left( x \right)=\dfrac{x-1}{x-{{x}^{3}}}?$
Answer
539.7k+ views
Hint: A line $y=b$ is a horizontal asymptote of the graph of a function $y=f\left( x \right)$ if either $\displaystyle \lim_{x \to \infty }f\left( x \right)=b$ or $\displaystyle \lim_{x \to -\infty }f\left( x \right)=b.$ A line $x=a$ is a vertical asymptote of a function$y=f\left( x \right)$ if either $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\pm \infty $ or $\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\pm \infty .$
Complete step-by-step solution:
Let us consider the given function $F\left( x \right)=\dfrac{x-1}{x-{{x}^{3}}}.$
We are asked to find the vertical, horizontal and oblique asymptotes for this function.
Let us simplify the given function as $F\left( x \right)=\dfrac{x-1}{x-{{x}^{3}}}=\dfrac{x-1}{x\left( 1-{{x}^{2}} \right)}=\dfrac{x-1}{-x\left( {{x}^{2}}-1 \right)}.$
Now, we will apply the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator.
We will get $F\left( x \right)=\dfrac{x-1}{-x\left( x+1 \right)\left( x-1 \right)}=\dfrac{-1}{x\left( x+1 \right)}=\dfrac{-1}{{{x}^{2}}+x}.$
Let us first discuss how to find the horizontal asymptotes for the given function.
A line $y=b$ is a horizontal asymptote of the graph of a function $y=f\left( x \right)$ if either $\displaystyle \lim_{x \to \infty }f\left( x \right)=b$ or $\displaystyle \lim_{x \to -\infty }f\left( x \right)=b.$
We will get $\displaystyle \lim_{x \to \pm \infty }f\left( x \right)=\displaystyle \lim_{x \to \pm \infty }\dfrac{-1}{{{x}^{2}}+x}=0.$
Therefore, there is a horizontal asymptote at $y=0.$
Let us first discuss how to find the vertical asymptotes for the given function.
A line $x=a$ is a vertical asymptote of a function$y=f\left( x \right)$ if either $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\pm \infty $ or $\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\pm \infty .$
We need to find the limit of the function at $x=a$ from the left side and the limit of the function at $x=a$ from the right side.
Now, $\displaystyle \lim_{x \to {{0}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-1}{{{x}^{2}}-x}=\infty .$
And $\displaystyle \lim_{x \to {{0}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{0}^{-}}}\dfrac{-1}{{{x}^{2}}-x}=-\infty .$
Now, we will get $x=0$ is a vertical asymptote.
Also, we will get $\displaystyle \lim_{x \to -{{1}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to -{{1}^{+}}}\dfrac{-1}{{{x}^{2}}+x}=0.$
And $\displaystyle \lim_{x \to -{{1}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to -{{1}^{-}}}\dfrac{-1}{{{x}^{2}}-x}=0.$
Therefore $x=-1$ is also a vertical asymptote.
By symmetry, the same is applicable for the line $x=1.$
We know that the oblique asymptote occurs when the degree of denominator is one less than the degree of numerator. Therefore, this function does not have oblique asymptotes.
Hence the given function has a horizontal asymptote at $y=0,$ vertical asymptotes at $x=0,\pm 1$ and no oblique asymptotes.
Note: We know that a straight line is said to be an asymptote of an infinite branch of the graph of a function if, as the point $P$ recedes to infinity along the branch, the perpendicular distance of $P$ from the straight line tends to zero.
Complete step-by-step solution:
Let us consider the given function $F\left( x \right)=\dfrac{x-1}{x-{{x}^{3}}}.$
We are asked to find the vertical, horizontal and oblique asymptotes for this function.
Let us simplify the given function as $F\left( x \right)=\dfrac{x-1}{x-{{x}^{3}}}=\dfrac{x-1}{x\left( 1-{{x}^{2}} \right)}=\dfrac{x-1}{-x\left( {{x}^{2}}-1 \right)}.$
Now, we will apply the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator.
We will get $F\left( x \right)=\dfrac{x-1}{-x\left( x+1 \right)\left( x-1 \right)}=\dfrac{-1}{x\left( x+1 \right)}=\dfrac{-1}{{{x}^{2}}+x}.$
Let us first discuss how to find the horizontal asymptotes for the given function.
A line $y=b$ is a horizontal asymptote of the graph of a function $y=f\left( x \right)$ if either $\displaystyle \lim_{x \to \infty }f\left( x \right)=b$ or $\displaystyle \lim_{x \to -\infty }f\left( x \right)=b.$
We will get $\displaystyle \lim_{x \to \pm \infty }f\left( x \right)=\displaystyle \lim_{x \to \pm \infty }\dfrac{-1}{{{x}^{2}}+x}=0.$
Therefore, there is a horizontal asymptote at $y=0.$
Let us first discuss how to find the vertical asymptotes for the given function.
A line $x=a$ is a vertical asymptote of a function$y=f\left( x \right)$ if either $\displaystyle \lim_{x \to {{a}^{+}}}f\left( x \right)=\pm \infty $ or $\displaystyle \lim_{x \to {{a}^{-}}}f\left( x \right)=\pm \infty .$
We need to find the limit of the function at $x=a$ from the left side and the limit of the function at $x=a$ from the right side.
Now, $\displaystyle \lim_{x \to {{0}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to {{0}^{+}}}\dfrac{-1}{{{x}^{2}}-x}=\infty .$
And $\displaystyle \lim_{x \to {{0}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to {{0}^{-}}}\dfrac{-1}{{{x}^{2}}-x}=-\infty .$
Now, we will get $x=0$ is a vertical asymptote.
Also, we will get $\displaystyle \lim_{x \to -{{1}^{+}}}f\left( x \right)=\displaystyle \lim_{x \to -{{1}^{+}}}\dfrac{-1}{{{x}^{2}}+x}=0.$
And $\displaystyle \lim_{x \to -{{1}^{-}}}f\left( x \right)=\displaystyle \lim_{x \to -{{1}^{-}}}\dfrac{-1}{{{x}^{2}}-x}=0.$
Therefore $x=-1$ is also a vertical asymptote.
By symmetry, the same is applicable for the line $x=1.$
We know that the oblique asymptote occurs when the degree of denominator is one less than the degree of numerator. Therefore, this function does not have oblique asymptotes.
Hence the given function has a horizontal asymptote at $y=0,$ vertical asymptotes at $x=0,\pm 1$ and no oblique asymptotes.
Note: We know that a straight line is said to be an asymptote of an infinite branch of the graph of a function if, as the point $P$ recedes to infinity along the branch, the perpendicular distance of $P$ from the straight line tends to zero.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

