
Find \[|\vec a|and|\vec b|,\,if(\vec a + \vec b).(\vec a - \vec b) = 8\,and\,\,|\vec a| = 8|\vec b|\].
Answer
508.5k+ views
Hint: We will multiply the vector by using the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$.
Thereafter we will calculate the value $a$ vector and $b$ vector.
Complete step by step solution:
$(\vec a + \vec b).(\vec a - \vec b) = 8$
Use algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$
Then, $|\vec a{|^2} - |\vec b{|^2} = 8$ …..(1)
Now, \[|\vec a| = 8|\vec b|\] ….(2)
Now, substituting equation (2) in equation (1), we have
${[8|\vec b|]^2} = |\vec b{|^2} = 8$
$64|\vec b{|^2} - |\vec b{|^2} = 8$
$ \Rightarrow 63|\vec b{|^2} = 8$
$ \Rightarrow |\vec b{|^2} = \dfrac{8}{{63}}$
$|b{|^2} = \sqrt {\dfrac{8}{{63}}} $
$|\vec b| = \sqrt {\dfrac{{4 \times 2}}{{7 \times 9}}} $
$|\vec b| = \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
Now,
$|\vec a| = 8|\vec b|$
$|\vec a| = 9 \times \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
$|a| = \dfrac{{16\sqrt 2 }}{{3\sqrt 7 }}$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $,
where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should solve the value of the square root carefully while you convert the square root value into square otherwise you will get the wrong answer.
Thereafter we will calculate the value $a$ vector and $b$ vector.
Complete step by step solution:
$(\vec a + \vec b).(\vec a - \vec b) = 8$
Use algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$
Then, $|\vec a{|^2} - |\vec b{|^2} = 8$ …..(1)
Now, \[|\vec a| = 8|\vec b|\] ….(2)
Now, substituting equation (2) in equation (1), we have
${[8|\vec b|]^2} = |\vec b{|^2} = 8$
$64|\vec b{|^2} - |\vec b{|^2} = 8$
$ \Rightarrow 63|\vec b{|^2} = 8$
$ \Rightarrow |\vec b{|^2} = \dfrac{8}{{63}}$
$|b{|^2} = \sqrt {\dfrac{8}{{63}}} $
$|\vec b| = \sqrt {\dfrac{{4 \times 2}}{{7 \times 9}}} $
$|\vec b| = \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
Now,
$|\vec a| = 8|\vec b|$
$|\vec a| = 9 \times \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
$|a| = \dfrac{{16\sqrt 2 }}{{3\sqrt 7 }}$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $,
where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should solve the value of the square root carefully while you convert the square root value into square otherwise you will get the wrong answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
