
Find \[|\vec a|and|\vec b|,\,if(\vec a + \vec b).(\vec a - \vec b) = 8\,and\,\,|\vec a| = 8|\vec b|\].
Answer
589.2k+ views
Hint: We will multiply the vector by using the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$.
Thereafter we will calculate the value $a$ vector and $b$ vector.
Complete step by step solution:
$(\vec a + \vec b).(\vec a - \vec b) = 8$
Use algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$
Then, $|\vec a{|^2} - |\vec b{|^2} = 8$ …..(1)
Now, \[|\vec a| = 8|\vec b|\] ….(2)
Now, substituting equation (2) in equation (1), we have
${[8|\vec b|]^2} = |\vec b{|^2} = 8$
$64|\vec b{|^2} - |\vec b{|^2} = 8$
$ \Rightarrow 63|\vec b{|^2} = 8$
$ \Rightarrow |\vec b{|^2} = \dfrac{8}{{63}}$
$|b{|^2} = \sqrt {\dfrac{8}{{63}}} $
$|\vec b| = \sqrt {\dfrac{{4 \times 2}}{{7 \times 9}}} $
$|\vec b| = \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
Now,
$|\vec a| = 8|\vec b|$
$|\vec a| = 9 \times \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
$|a| = \dfrac{{16\sqrt 2 }}{{3\sqrt 7 }}$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $,
where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should solve the value of the square root carefully while you convert the square root value into square otherwise you will get the wrong answer.
Thereafter we will calculate the value $a$ vector and $b$ vector.
Complete step by step solution:
$(\vec a + \vec b).(\vec a - \vec b) = 8$
Use algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$
Then, $|\vec a{|^2} - |\vec b{|^2} = 8$ …..(1)
Now, \[|\vec a| = 8|\vec b|\] ….(2)
Now, substituting equation (2) in equation (1), we have
${[8|\vec b|]^2} = |\vec b{|^2} = 8$
$64|\vec b{|^2} - |\vec b{|^2} = 8$
$ \Rightarrow 63|\vec b{|^2} = 8$
$ \Rightarrow |\vec b{|^2} = \dfrac{8}{{63}}$
$|b{|^2} = \sqrt {\dfrac{8}{{63}}} $
$|\vec b| = \sqrt {\dfrac{{4 \times 2}}{{7 \times 9}}} $
$|\vec b| = \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
Now,
$|\vec a| = 8|\vec b|$
$|\vec a| = 9 \times \dfrac{{2\sqrt 2 }}{{3\sqrt 7 }}$
$|a| = \dfrac{{16\sqrt 2 }}{{3\sqrt 7 }}$
Additional information: The dot product between two vectors $a$ and $b$ is $a.b = ||a||||b||\cos \theta $,
where $\theta $ is the angle between vectors $a\,\,and\,\,b$.
Note: Students should solve the value of the square root carefully while you convert the square root value into square otherwise you will get the wrong answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

