
Find value of $\int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Answer
472.5k+ views
Hint:
let us consider $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $ then we will use integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$. And after that we can see that I will be in terms of cosine then we will use integration by part again and convert into sine form.
Complete step by step solution:
Let $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Now, using integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$
So, $I = \sin \left( {bx + c} \right)\int {{e^{ax}}dx - \int {\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}dx} } \right)dx} } $
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}} = b\cos \left( {bx + c} \right)$
\[I = \dfrac{{\sin \left( {bx + c} \right){e^{ax}} - \int {b\cos \left( {bx + c} \right){e^{ax}}dx} }}{a}\]
Again, using integration by part for \[\int {b\cos \left( {bx + c} \right){e^{ax}}dx} \] where $U = \cos \left( {bx + c} \right)$ and $V = {e^{ax}}$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {b\cos \left( {bx + c} \right)\int {{e^{ax}}dx - b\int {\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}} dx} \right)dx} } } \right)} \right)\]
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}} = - b\sin \left( {bx + c} \right)$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{a}\cos \left( {bx + c} \right){e^{ax}} - b\int { - \dfrac{b}{a}\sin \left( {bx + a} \right){e^{ax}}dx} } \right)} \right)\]
$I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
So, \[I = \dfrac{1}{a}\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{{{a^2}}}\cos \left( {bx + c} \right){e^{ax}} + \left( {\dfrac{{{b^2}}}{{{a^2}}}I} \right)} \right)\]
$\dfrac{{{a^2} - {b^2}}}{{{a^2}}}I = \dfrac{{{e^{ax}}}}{{{a^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Hence $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Note:
It become a formula for these types of question form sine $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$ and for cosine it is $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\cos \left( {bx + c} \right) + b\sin \left( {bx + c} \right)} \right)$. Formula of integration by part is $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where U and V is selected according to ILATE.
let us consider $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $ then we will use integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$. And after that we can see that I will be in terms of cosine then we will use integration by part again and convert into sine form.
Complete step by step solution:
Let $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Now, using integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$
So, $I = \sin \left( {bx + c} \right)\int {{e^{ax}}dx - \int {\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}dx} } \right)dx} } $
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}} = b\cos \left( {bx + c} \right)$
\[I = \dfrac{{\sin \left( {bx + c} \right){e^{ax}} - \int {b\cos \left( {bx + c} \right){e^{ax}}dx} }}{a}\]
Again, using integration by part for \[\int {b\cos \left( {bx + c} \right){e^{ax}}dx} \] where $U = \cos \left( {bx + c} \right)$ and $V = {e^{ax}}$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {b\cos \left( {bx + c} \right)\int {{e^{ax}}dx - b\int {\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}} dx} \right)dx} } } \right)} \right)\]
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}} = - b\sin \left( {bx + c} \right)$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{a}\cos \left( {bx + c} \right){e^{ax}} - b\int { - \dfrac{b}{a}\sin \left( {bx + a} \right){e^{ax}}dx} } \right)} \right)\]
$I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
So, \[I = \dfrac{1}{a}\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{{{a^2}}}\cos \left( {bx + c} \right){e^{ax}} + \left( {\dfrac{{{b^2}}}{{{a^2}}}I} \right)} \right)\]
$\dfrac{{{a^2} - {b^2}}}{{{a^2}}}I = \dfrac{{{e^{ax}}}}{{{a^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Hence $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Note:
It become a formula for these types of question form sine $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$ and for cosine it is $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\cos \left( {bx + c} \right) + b\sin \left( {bx + c} \right)} \right)$. Formula of integration by part is $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where U and V is selected according to ILATE.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
