
Find value of $\int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Answer
570.6k+ views
Hint:
let us consider $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $ then we will use integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$. And after that we can see that I will be in terms of cosine then we will use integration by part again and convert into sine form.
Complete step by step solution:
Let $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Now, using integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$
So, $I = \sin \left( {bx + c} \right)\int {{e^{ax}}dx - \int {\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}dx} } \right)dx} } $
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}} = b\cos \left( {bx + c} \right)$
\[I = \dfrac{{\sin \left( {bx + c} \right){e^{ax}} - \int {b\cos \left( {bx + c} \right){e^{ax}}dx} }}{a}\]
Again, using integration by part for \[\int {b\cos \left( {bx + c} \right){e^{ax}}dx} \] where $U = \cos \left( {bx + c} \right)$ and $V = {e^{ax}}$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {b\cos \left( {bx + c} \right)\int {{e^{ax}}dx - b\int {\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}} dx} \right)dx} } } \right)} \right)\]
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}} = - b\sin \left( {bx + c} \right)$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{a}\cos \left( {bx + c} \right){e^{ax}} - b\int { - \dfrac{b}{a}\sin \left( {bx + a} \right){e^{ax}}dx} } \right)} \right)\]
$I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
So, \[I = \dfrac{1}{a}\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{{{a^2}}}\cos \left( {bx + c} \right){e^{ax}} + \left( {\dfrac{{{b^2}}}{{{a^2}}}I} \right)} \right)\]
$\dfrac{{{a^2} - {b^2}}}{{{a^2}}}I = \dfrac{{{e^{ax}}}}{{{a^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Hence $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Note:
It become a formula for these types of question form sine $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$ and for cosine it is $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\cos \left( {bx + c} \right) + b\sin \left( {bx + c} \right)} \right)$. Formula of integration by part is $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where U and V is selected according to ILATE.
let us consider $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $ then we will use integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$. And after that we can see that I will be in terms of cosine then we will use integration by part again and convert into sine form.
Complete step by step solution:
Let $I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
Now, using integration by part $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where $U = \sin \left( {bx + c} \right)$ and $V = {e^{ax}}$
So, $I = \sin \left( {bx + c} \right)\int {{e^{ax}}dx - \int {\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}dx} } \right)dx} } $
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\sin \left( {bx + c} \right)}}{{dx}} = b\cos \left( {bx + c} \right)$
\[I = \dfrac{{\sin \left( {bx + c} \right){e^{ax}} - \int {b\cos \left( {bx + c} \right){e^{ax}}dx} }}{a}\]
Again, using integration by part for \[\int {b\cos \left( {bx + c} \right){e^{ax}}dx} \] where $U = \cos \left( {bx + c} \right)$ and $V = {e^{ax}}$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {b\cos \left( {bx + c} \right)\int {{e^{ax}}dx - b\int {\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}}\left( {\int {{e^{ax}}} dx} \right)dx} } } \right)} \right)\]
$\int {{e^{ax}}dx = \dfrac{{{e^{ax}}}}{a}} $ and $\dfrac{{d\cos \left( {bx + c} \right)}}{{dx}} = - b\sin \left( {bx + c} \right)$
\[I = \dfrac{1}{a}\left( {\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{a}\cos \left( {bx + c} \right){e^{ax}} - b\int { - \dfrac{b}{a}\sin \left( {bx + a} \right){e^{ax}}dx} } \right)} \right)\]
$I = \int {{e^{ax}} \cdot \sin \left( {bx + c} \right)dx} $
So, \[I = \dfrac{1}{a}\sin \left( {bx + c} \right){e^{ax}} - \left( {\dfrac{b}{{{a^2}}}\cos \left( {bx + c} \right){e^{ax}} + \left( {\dfrac{{{b^2}}}{{{a^2}}}I} \right)} \right)\]
$\dfrac{{{a^2} - {b^2}}}{{{a^2}}}I = \dfrac{{{e^{ax}}}}{{{a^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Hence $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$
Note:
It become a formula for these types of question form sine $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right)$ and for cosine it is $I = \dfrac{{{e^{ax}}}}{{{a^2} - {b^2}}}\left( {\cos \left( {bx + c} \right) + b\sin \left( {bx + c} \right)} \right)$. Formula of integration by part is $\int {UVdx = U\int {Vdx - \int {\dfrac{{dU}}{{dx}}\left( {\int {Vdx} } \right)dx} } } $ where U and V is selected according to ILATE.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

