
Find value of A when $3\sin \theta + 4\cos \theta = A\sin \left( {\theta + \phi } \right)$.
Answer
575.7k+ views
Hint: We will find the solution of this type of problem by substitution method. In this type of problem $\left( {a\sin \theta + b\cos \theta } \right)$ we substitute ‘a’ as $r\cos \phi \,\,and\,\,\,b\,\,as\,\,r\sin \phi $ and then on squaring and adding finding value of ‘r’ and on dividing them we will get$\phi $. Using these in the given equation on comparing we can get the value of A and hence the required solution.
Formula used: $\sin (A + B) = \sin A\cos B + \cos A\sin B$
Complete Answer:
We have
$3\sin \theta + 4\cos \theta = A\sin \left( {\theta + \phi } \right)$
Taking,
$
\Rightarrow 3 = r\cos \phi \,..................(i) \\
\,and\, \\
\Rightarrow \,4 = r\sin \phi ..................(ii) \\
$
In the above equation. We have
$\Rightarrow r\cos \phi \sin \theta + r\sin \phi \cos \theta = A\sin \left( {\theta + \phi } \right)$
taking ’r’ common from left side
$\Rightarrow r\left( {\cos \phi \sin \theta + \sin \phi \cos \theta } \right) = A\sin \left( {\theta + \phi } \right) \\
\Rightarrow r\sin \left( {\theta + \phi } \right) = A\sin \left( {\theta + \phi } \right).............................(iii) \\
$
From (i) and (ii), on squaring and adding. We have
$
\Rightarrow {(3)^2} = {\left( {r\cos \phi } \right)^2}, \\
\Rightarrow {(4)^2} = {\left( {r\sin \phi } \right)^2}, \\
\\
\Rightarrow {(3)^2} + {(4)^2} = {\left( {r\cos \phi } \right)^2} + {\left( {r\sin \phi } \right)^2} \\
\Rightarrow 9 + 16 = {r^2}{\cos ^2}\phi + {r^2}{\sin ^2}\phi \\
or \\
25 = {r^2}\left( {{{\cos }^2}\phi + {{\sin }^2}\phi } \right) \\
\Rightarrow 25 = {r^2} \\
or\, \\
{r^2} = 25 \\
\Rightarrow r = 5 \\
$
Also, on dividing (ii) by (i) we have,
$
\Rightarrow \dfrac{{r\sin \phi }}{{r\cos \phi }} = \dfrac{4}{3} \\
\Rightarrow \tan \phi = \dfrac{4}{3} \\
\Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
$
Using ‘r’ and $\phi $in (iii) we have
$
\Rightarrow 5\sin \left( {\theta + \phi } \right) = A\sin \left( {\theta + \phi } \right) \\
\Rightarrow A = 5 \\
$
Hence, from above we see that required value of A is $5.$
Note: In this problem we can take substitution as either $a = r\cos \phi \,\,and\,\,\,b = r\sin \phi $ or $a = r\sin \phi \,\,and\,\,b = r\cos \phi $ and on solving along either way, results remains same in both cases. Hence, there are two different substitutions but results at the end will be the same for both.
Formula used: $\sin (A + B) = \sin A\cos B + \cos A\sin B$
Complete Answer:
We have
$3\sin \theta + 4\cos \theta = A\sin \left( {\theta + \phi } \right)$
Taking,
$
\Rightarrow 3 = r\cos \phi \,..................(i) \\
\,and\, \\
\Rightarrow \,4 = r\sin \phi ..................(ii) \\
$
In the above equation. We have
$\Rightarrow r\cos \phi \sin \theta + r\sin \phi \cos \theta = A\sin \left( {\theta + \phi } \right)$
taking ’r’ common from left side
$\Rightarrow r\left( {\cos \phi \sin \theta + \sin \phi \cos \theta } \right) = A\sin \left( {\theta + \phi } \right) \\
\Rightarrow r\sin \left( {\theta + \phi } \right) = A\sin \left( {\theta + \phi } \right).............................(iii) \\
$
From (i) and (ii), on squaring and adding. We have
$
\Rightarrow {(3)^2} = {\left( {r\cos \phi } \right)^2}, \\
\Rightarrow {(4)^2} = {\left( {r\sin \phi } \right)^2}, \\
\\
\Rightarrow {(3)^2} + {(4)^2} = {\left( {r\cos \phi } \right)^2} + {\left( {r\sin \phi } \right)^2} \\
\Rightarrow 9 + 16 = {r^2}{\cos ^2}\phi + {r^2}{\sin ^2}\phi \\
or \\
25 = {r^2}\left( {{{\cos }^2}\phi + {{\sin }^2}\phi } \right) \\
\Rightarrow 25 = {r^2} \\
or\, \\
{r^2} = 25 \\
\Rightarrow r = 5 \\
$
Also, on dividing (ii) by (i) we have,
$
\Rightarrow \dfrac{{r\sin \phi }}{{r\cos \phi }} = \dfrac{4}{3} \\
\Rightarrow \tan \phi = \dfrac{4}{3} \\
\Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
$
Using ‘r’ and $\phi $in (iii) we have
$
\Rightarrow 5\sin \left( {\theta + \phi } \right) = A\sin \left( {\theta + \phi } \right) \\
\Rightarrow A = 5 \\
$
Hence, from above we see that required value of A is $5.$
Note: In this problem we can take substitution as either $a = r\cos \phi \,\,and\,\,\,b = r\sin \phi $ or $a = r\sin \phi \,\,and\,\,b = r\cos \phi $ and on solving along either way, results remains same in both cases. Hence, there are two different substitutions but results at the end will be the same for both.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

