Answer
Verified
420.3k+ views
Hint: In order to find the number of rational numbers between any two numbers, add the given two numbers and divide the sum of two numbers by 2. Repeat this again adding the average of previous two rational numbers with the third number.
Complete step-by-step solution:
Here, in first part of question, we have
a) -2 and 3
As we know, the simplest method to find a rational number between any two rational numbers a and b is to divide their sum by 2.
Here, we have a= -2 and b= 3
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{ - 2 + 3}}{2}$= $\dfrac{1}{2}$= 0.5
Hence, we need to find two rational numbers between them,
Now we find rational number between -2 and 0.5 (which is rational numbers between -2 and 3)
Here, we have a= -2 and b= 0.5
Rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{ - 2 + 0.5}}{2}$= $\dfrac{{ - 1.5}}{2}$= -0.75
Therefore, two rational numbers between -2 and 3 are $\dfrac{1}{2}$ and $\dfrac{{ - 1.5}}{2}$
b) $\dfrac{2}{3}$ and $\dfrac{{13}}{{14}}$
Now, In Second part of question-
Here, we have a= $\dfrac{2}{3}$ and b= $\dfrac{{13}}{{14}}$
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{\dfrac{2}{3} + \dfrac{{13}}{{14}}}}{2}$= $\dfrac{{\dfrac{{28 + 39}}{{42}}}}{2}$= $\dfrac{{\dfrac{{67}}{{42}}}}{2}$= $\dfrac{{67}}{{84}}$
Hence, we need to find two rational numbers between them,
Now we find rational number between $\dfrac{2}{3}$ and $\dfrac{{67}}{{84}}$ (which is rational numbers between $\dfrac{2}{3}$ and $\dfrac{{13}}{{14}}$)
Here, we have a= $\dfrac{2}{3}$ and b= $\dfrac{{67}}{{84}}$
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{\dfrac{2}{3} + \dfrac{{67}}{{84}}}}{2} = \dfrac{{\dfrac{{56 + 67}}{{84}}}}{2} = \dfrac{{\dfrac{{123}}{{84}}}}{2} = \dfrac{{123}}{{168}}$
Therefore, two rational numbers between $\dfrac{2}{3}$and $\dfrac{{13}}{{14}}$ is $\dfrac{{67}}{{84}}$ and $\dfrac{{123}}{{168}}$.
Note: Always remember that a rational number is a number which can be written in the form of $\dfrac{{\text{p}}}{{\text{q}}}$(ratio) where the denominator(q) is not equal to 0. This means it can be represented in the form of a fraction. Therefore, we say every rational number has a numerator and a denominator, that is, one integer divided by another integer, where the denominator is not equal to zero.
Complete step-by-step solution:
Here, in first part of question, we have
a) -2 and 3
As we know, the simplest method to find a rational number between any two rational numbers a and b is to divide their sum by 2.
Here, we have a= -2 and b= 3
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{ - 2 + 3}}{2}$= $\dfrac{1}{2}$= 0.5
Hence, we need to find two rational numbers between them,
Now we find rational number between -2 and 0.5 (which is rational numbers between -2 and 3)
Here, we have a= -2 and b= 0.5
Rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{ - 2 + 0.5}}{2}$= $\dfrac{{ - 1.5}}{2}$= -0.75
Therefore, two rational numbers between -2 and 3 are $\dfrac{1}{2}$ and $\dfrac{{ - 1.5}}{2}$
b) $\dfrac{2}{3}$ and $\dfrac{{13}}{{14}}$
Now, In Second part of question-
Here, we have a= $\dfrac{2}{3}$ and b= $\dfrac{{13}}{{14}}$
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{\dfrac{2}{3} + \dfrac{{13}}{{14}}}}{2}$= $\dfrac{{\dfrac{{28 + 39}}{{42}}}}{2}$= $\dfrac{{\dfrac{{67}}{{42}}}}{2}$= $\dfrac{{67}}{{84}}$
Hence, we need to find two rational numbers between them,
Now we find rational number between $\dfrac{2}{3}$ and $\dfrac{{67}}{{84}}$ (which is rational numbers between $\dfrac{2}{3}$ and $\dfrac{{13}}{{14}}$)
Here, we have a= $\dfrac{2}{3}$ and b= $\dfrac{{67}}{{84}}$
rational numbers between them = $\dfrac{{{\text{a + b}}}}{{\text{2}}}$= $\dfrac{{\dfrac{2}{3} + \dfrac{{67}}{{84}}}}{2} = \dfrac{{\dfrac{{56 + 67}}{{84}}}}{2} = \dfrac{{\dfrac{{123}}{{84}}}}{2} = \dfrac{{123}}{{168}}$
Therefore, two rational numbers between $\dfrac{2}{3}$and $\dfrac{{13}}{{14}}$ is $\dfrac{{67}}{{84}}$ and $\dfrac{{123}}{{168}}$.
Note: Always remember that a rational number is a number which can be written in the form of $\dfrac{{\text{p}}}{{\text{q}}}$(ratio) where the denominator(q) is not equal to 0. This means it can be represented in the form of a fraction. Therefore, we say every rational number has a numerator and a denominator, that is, one integer divided by another integer, where the denominator is not equal to zero.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE