Answer
Verified
457.2k+ views
Hint: We will form two equations with two unknowns using the given information. We will obtain a quadratic equation in one variable by substitution. Then we will solve the quadratic equation using the quadratic formula. The solution of the quadratic formula will be one of the two required numbers. Using the solution of the quadratic equation, we will be able to find the other number.
Complete step by step answer:
Let the two numbers be $x$ and $y$. According to the given information, we have the following two equations,
$x+y=27$....(i)
$x\times y=182$....(ii)
From equation (i), we can write $y=27-x$. Substituting this value in equation (ii), we get
$\begin{align}
& x\times \left( 27-x \right)=182 \\
& \therefore 27x-{{x}^{2}}=182 \\
\end{align}$
Rearranging the above equation, we get the following quadratic equation,
${{x}^{2}}-27x+182=0$
The general quadratic equation is $a{{x}^{2}}+bx+c=0$ and the quadratic formula for solving this equation is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. We will compare the above quadratic equation with the general quadratic equation, so we have $a=1,\text{ }b=-27,\text{ }c=182$. We will substitute these values in the quadratic formula to find the values of $x$ in the following manner,
$x=\dfrac{-\left( -27 \right)\pm \sqrt{{{27}^{2}}-4\times 1\times 182}}{2\times 1}$
Simplifying the above equation, we get
$\begin{align}
& x=\dfrac{27\pm \sqrt{729-728}}{2} \\
&\Rightarrow x =\dfrac{27\pm 1}{2}
\end{align}$
Therefore, we get $x=\dfrac{28}{2}=14$ or $x=\dfrac{26}{2}=13$.
Now, substituting these values in equation (i), we get
for $x=14$, we have $y=27-14=13$ and for $x=13$, we have $y=27-13=14$
Therefore, the two numbers whose sum is 27 and product is 182 are 13 and 14.
Note: There is another method to solve this question which involves solving a quadratic equation with a different method. If we are familiar with the method of solving a quadratic equation by factorization, then we can reach the answer in fewer steps. The substitutions need to be done explicitly to avoid confusion.
Complete step by step answer:
Let the two numbers be $x$ and $y$. According to the given information, we have the following two equations,
$x+y=27$....(i)
$x\times y=182$....(ii)
From equation (i), we can write $y=27-x$. Substituting this value in equation (ii), we get
$\begin{align}
& x\times \left( 27-x \right)=182 \\
& \therefore 27x-{{x}^{2}}=182 \\
\end{align}$
Rearranging the above equation, we get the following quadratic equation,
${{x}^{2}}-27x+182=0$
The general quadratic equation is $a{{x}^{2}}+bx+c=0$ and the quadratic formula for solving this equation is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. We will compare the above quadratic equation with the general quadratic equation, so we have $a=1,\text{ }b=-27,\text{ }c=182$. We will substitute these values in the quadratic formula to find the values of $x$ in the following manner,
$x=\dfrac{-\left( -27 \right)\pm \sqrt{{{27}^{2}}-4\times 1\times 182}}{2\times 1}$
Simplifying the above equation, we get
$\begin{align}
& x=\dfrac{27\pm \sqrt{729-728}}{2} \\
&\Rightarrow x =\dfrac{27\pm 1}{2}
\end{align}$
Therefore, we get $x=\dfrac{28}{2}=14$ or $x=\dfrac{26}{2}=13$.
Now, substituting these values in equation (i), we get
for $x=14$, we have $y=27-14=13$ and for $x=13$, we have $y=27-13=14$
Therefore, the two numbers whose sum is 27 and product is 182 are 13 and 14.
Note: There is another method to solve this question which involves solving a quadratic equation with a different method. If we are familiar with the method of solving a quadratic equation by factorization, then we can reach the answer in fewer steps. The substitutions need to be done explicitly to avoid confusion.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it