Answer
Verified
382.5k+ views
Hint: We are given here, two numbers such that one number exceeds the other by \[9\] and their sum is \[81\]. We have to find those numbers. We do this by making this an equation of one variable. We consider one of the numbers as a variable and we get the other number in terms of that variable as well. Then we try to find the value of that variable. Once we get that value, we can easily find both the numbers.
Complete step-by-step solution:
Here, we have to find the value of two numbers who differ by \[9\] and their sum is \[81\]. We consider the smaller number to be a variable say \[x\]. Then according to the question the greater number would be \[x + 9\]. Now since we know that the sum of both the numbers are \[81\], we say that,
\[(x + 9) + x = 81\]
On moving forward, we get
\[
2x + 9 = 81 \\
\Rightarrow 2x = 81 - 9 \\
\Rightarrow 2x = 72 \\
\Rightarrow x = \dfrac{{72}}{2} \\
\Rightarrow x = 36 \]
Hence the value of the smaller number is \[36\]. Now using this we will get the value of greater number by putting \[x = 36\] in \[x + 9\] as,
\[36 + 9 = 45\]
Hence, we get the value of both the required numbers as \[36\] and \[45\].
Note: Whenever two values are to be found and the relations between both the values are given, we solve the question using the equation of one variable. If the relations between the values to be found are not given then, only we will use the equation in two variables.
Complete step-by-step solution:
Here, we have to find the value of two numbers who differ by \[9\] and their sum is \[81\]. We consider the smaller number to be a variable say \[x\]. Then according to the question the greater number would be \[x + 9\]. Now since we know that the sum of both the numbers are \[81\], we say that,
\[(x + 9) + x = 81\]
On moving forward, we get
\[
2x + 9 = 81 \\
\Rightarrow 2x = 81 - 9 \\
\Rightarrow 2x = 72 \\
\Rightarrow x = \dfrac{{72}}{2} \\
\Rightarrow x = 36 \]
Hence the value of the smaller number is \[36\]. Now using this we will get the value of greater number by putting \[x = 36\] in \[x + 9\] as,
\[36 + 9 = 45\]
Hence, we get the value of both the required numbers as \[36\] and \[45\].
Note: Whenever two values are to be found and the relations between both the values are given, we solve the question using the equation of one variable. If the relations between the values to be found are not given then, only we will use the equation in two variables.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers